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1 Three way factorial design. A completely randomized, “between
subjects” design

This document is designed for students in the APSY510/511 introductory statistics sequence
at the University at Albany. However, it should have much more general utility for other



students and researchers learning to use R. A major strength of the document is presentation
of extensive methods/logic of employing analytical/orthogonal contrasts both as an approach
to obtaining the omnibus analysis and for direct evaluation.

Designs that are called “Completely Randomized Factorial Designs”, presume assignment of
cases to groups independently. They are sometimes called “between subjects” designs in the
psychological sciences. For the design covered in this document, three independent variables
are factorially arranged so that each level of each factor is found in combination with each
level of the other factors.

The challenge of analyzing a 3 way factorial design is not in the specification and analysis of
the omnibus model (aov, 1m, afex,granova‘), it is in the follow up analyses.

With the use of the phia and emmeans packages we can obtain Simple 2-way interactions,
Simple Simple Main Effects, Simple Main Effects, and orthogonally partitioned contrasts (and
non-orthogonal ones) on all sources of variance, e.g., 3-, and 2-way interaction contrasts, main
effect contrasts, simple main effect contrasts.

The bulk of the presentation here is a traditional NHST framework.

This document still needs:

1. easier ways to compute effect sizes, especially for contrasts
2. bayesian and robust methods

3. more on post hoc tests

In order to use this tutorial effectively, the reader should be alert to terminology specific to the
style of ANOVA analysis that is traditional in the textbooks such as Kirk, Winer, Keppel, and
Maxwell/Delaney/Kelley. For some of the terminology, block diagram depecitons of a 3-way
factorial are included for clarity. The relevant terminology/notation includes:

o A fized effects AzBxC design: Three independent variables, perhaps called A, B, and C.
Fully “between groups” design where participants/cases are measured only once on the
outcome variable under the combined conditions of factors A, B, and C. All independent
variables are fixed rather than random.

e Levels: The groups defined by each variable are called levels. E.g., in the primary example
used in this document the “Grade” factor (factor C) has two “levels”: fifth grade and
twelfth grade.

e Fuactorial: The design is called a factorial since each level of each factor is found in all
possible combinations with all levels of all other factors. So, for example a 3x3x2 factorial
design (AxBxC) has 18 total combinations or “cells”



o (Cell means vs Marginal Means, Omnibus Effects: Cells are defined by the three way
combination of factors. The 3x3x2 design used in this document has 18 cells. But we
can imaging “collapsing” on one or more IVs to produce marginal sets of means. For
example collapsing on factor C produces an AxB matrix of means (9 means) and that
would lead to assessment of the omnibus AxB interaction term. The omnibus terms in a
3 way factorial are the three main effects, the three two way interactions and the three
way interaction, plus the pooled within group source (residual).

o Simple Effects

When effects of one or more factors are examined at only specific levels of one or more other
factor, then those effects are “simple” I find that this term is not generically used outside of
the psychology experimental design textbook world or in the R ecosystem. But there is no
alternative terminology so the “simple” phraseology strikes me as having a useful role even
though a phrase like “simple, simple” may seem a bit silly. These can include:

o Simple interactions: It is possible to ask a two way interaction question (e.g., AxB), not
in an omnibus sense, but at a level of a third IV. For example - AxB at Cl1

Here is a block diagram depiction of a 3-way design that is a 4x2x2, thus 24 total cells. The red
rectangle outlines the part of the study where only participants treated with C1 are. We could
imagine a 2-way interaction of A and B there. Thus it would be the simple 2-way interaction
of A*B @ C1

A, | A | A | A A, | A | A | A,
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o Simple Simple Main effects: The term “main” implies the effect of one factor, but the
word “simple” implies that the effect is examined at some level of one or more other
factors. The textbook language of “simple-simple” implies that the effect of the one
factor of interest (e.g., A) is examined at combined levels of two other factors. For
example - B at A3,C2

Here is a depiction of a simple simple main effect of B at A3,C2. The effect involves the
variation of the three means whose cells are indicated by the black dots - it is a one-dimensional
(1-way) question about factor A, located in a specific section of the full block diagram.
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o Simple Main effects: effects of one IV at levels of another factor, but collapsed on the
third. E.g., A at B1 or C at A3. These are 1-way questions about the effect of a single
IV but the location of the questions is specified by a level of a second variable. The word
“collapse” indicates that the grid of means is averaged over a third factor. Depicted with
the block diagram, we can see the simple main effect of factor A is examined collapsed
over B (the marginals), but only in the Cl-treated participants. Thus A @ C1 implies
collapsing over factor B

Ar | A | A | Ay Ar | A | A | A,

Ca

An important part of the grasp of the logic is the understanding of these following concepts:

o A three way interaction is a test of whether simple 2 way interactions differ across levels
of a 3rd variable, e.g., AxB at C1 is not the same as AxB at C2

e A simple 2 way interaction is a test of whether simple simple main effects differ.
¢ An omnibus 2 way interaction tests whether simple main effects differ.

e A 3 way interaction contrast tests whether simple 2way interaction contrasts differ across
levels of a third factor.

e 2 way interaction contrasts test whether simple main effect contrasts differ.



When designs such as this are fully factorial, between-groups designs, the error term for all of
the sources above would be MSwithin.

In addition, many sections of this tutorial rely on the idea of creating orthogonal sets of
contrasts. This philosophy derives from the alignment of that approach with theory-driven a
priori hypotheses and from the recognized value of full rank models in ANOVA work.

2 R setup

Quite a few packages are used in this document. In many code chunks, where a the
package origin of a function is not described or obvious, I use the pkgname: : functionname
syntax when a function is called. For example psych::describeBy calls the describeBy
function from the **psych** package. This format is not used when functions
come from base system packages. 0One can always ask for help on a function
(?functionname‘) to establish the package of its origin if I've been inconsistent in this
syntactical phrasing.

library(afex)
library(bcdstats) #available from bcdudek on Github
library(car)
library(effectsize)
library (emmeans)
library(ggplot2)
library(ggthemes)
library(ggrain)
library(gt)
library(knitr)
library(lmtest)
library(nortest)
library(phia)
library(plyr)
library (psych)
library(Rmisc)
library(sciplot)
library(sjstats)
library(tibble)



3 Data Definition

The data are from Keppel and Wickens, pg 466 data set, a 3x3x2 design it is the “kep-
pel_3way_pgd66.csv” file. The dependent variable is number of words recalled from a mem-
orized list. Three independent variables were involved and factorially arranged. Participants
were either fifth or twelfth graders. They were assigned to one of three Feedback conditions:
control (none), praise, or negative. The words were one of three types: “LF_LE” “HF_LE”,
or “HF__HE?”. The factorial arrangement of these three factors thus produced a total of eighteen
cells in the design.

The data set was explicitly chosen because the effects in the model are subtle and a simple
story does not emerge. But it does serve as a useful illustration of how to extract a very wide
range of analyses from this 3way factorial design.

In most illustrations in this document, the emphasis is more on how to perform the myriad
analyses rather than on interpretation of the outcome of this textbook data set.

Here, the data are loaded into a data frame.

bg.3way <- read.csv("keppel_3way_pgld66.csv",header=T, stringsAsFactors=TRUE)

Examine the contents of a few lines of the data frame.

head (bg.3way)

snum feedback wordtype grade numrecall

1 1 none LF_LE fifth 7
2 2 none LF_LE fifth 7
3 3 none LF_LE fifth 9
4 4 none LF_LE fifth 10
5 5 none LF_LE fifth 9
6 6 none HF_LE fifth 7

Also check the structure of the data frame to verify that the IV’s are factors.

str (bg.3way)

'data.frame': 90 obs. of b5 variables:

$ snum :int 123456789 10 ...

$ feedback : Factor w/ 3 levels "neg","none","pos": 2222222222 ...
$ wordtype : Factor w/ 3 levels "HF_HE","HF_LE",..: 3333322222 ...
$ grade : Factor w/ 2 levels "fifth","twelfth": 1 1 11111111

$ numrecall: int 7 7 9 10 9 7 8 9 10 10 ...



3.1 Rework some data defninition characteristics

Some housekeeping with data definition that helps with formatting output/graphs is accom-
plished here.

e change values of feedback variable to whole words to facilitate better graph reading
e recode function in car is useful

bg.3way$feedback <- car::recode(bg.3way$feedback, "'none'='None'; 'pos'='Positive';

Next, I reorder the levels of two of the factors so that they are not the default alphabetical
that R uses. The new orders match how we worked with these variables in other software.
These orders are useful in graph labeling and in construction of contrast vectors.

bg.3way$feedback <- factor(bg.3way$feedback,
levels=c("None","Positive","Negative"))

bg.3way$wordtype <- factor(bg.3way$wordtype,
levels=c("LF_LE","HF _LE","HF_HE"))

Check that the orders are as requested:

levels(bg.3way$feedback)

[1] "None" "Positive" "Negative"

levels(bg.3way$wordtype)

(1] "LF_LE" "HF_LE" "HF_HE"

Convert the snum variable from a numeric to a factor for better compatibility with afex
functions.

bg.3way$snum <- as.factor(bg.3way$snum)

In order to make writing code easier for the graphing functions, the data frame is attached
here. Prior to the ANOVA work it will be detached.

attach(bg.3way)

Look at contents of the final version of the data frame

'neg'="N



psych: :headTail (bg.3way,8,8)

snum feedback wordtype  grade numrecall

1 1 None LF_LE fifth 7
2 2 None LF_LE fifth 7
3 3 None LF_LE fifth 9
4 4 None LF_LE fifth 10
5 5 None LF_LE fifth 9
6 6 None HF_LE fifth 7
7 7 None HF_LE fifth 8
8 8 None HF_LE fifth 9

. <NA> <NA> <NA> <NA> ce
83 83 Negative HF_LE twelfth 6
84 84 Negative HF_LE twelfth 9
85 85 Negative HF_LE twelfth 9
86 86 Negative HF_HE twelfth 6
87 87 Negative HF_HE twelfth 5
88 88 Negative HF_HE twelfth 7
89 89 Negative HF_HE twelfth 8
90 90 Negative HF_HE twelfth 9

4 Exploratory Data Analysis

Numeric and graphical summaries are obtained in this section.

4.1 Numerical summaries of the dependent variable, by group.

First, use the psych package to look at descriptives. In order to obtain nicer looking tables, it
required some relabeling and splitting of the object produced by describeBy into two separate
tables - with nicerformatting by using gt.

desl <- describeBy(numrecall, list(wordtype,feedback,grade), mat=T,type=2, data=bg.3way)
row.names (desl) <- NULL

colnames(desl) [2] <- "Wordtype"

colnames(des1) [3] <- "Feedback"

colnames(desl) [4] <- "Grade"

colnames (des1) [10] <- "Trimmed_mean"

gt::gt(des1[,c(2:4,5:9)1)



Wordtype Feedback Grade vars n mean sd median
LF_LE None fifth 1 5 8.4 1.341641 9
HF LE None fifth 1 5 8.8 1.303840 9
HF HE None fifth 1 5 8.0 1.414214 7
LF _LE Positive fifth 1 5 7.8 1.303840 8
HF LE Positive fifth 1 5 8.0 1.224745 8
HF HE Positive fifth 1 5 4.4 1.341641 5
LF LE Negative fifth 1 5 8.0 1.414214 8
HF LE Negative fifth 1 ) 7.6 1.341641 7
HF HE Negative fifth 1 5 3.8 1.303840 4
LF_LE None twelfth 1 5 8.4 1.140175 8
HF LE None twelfth 1 5 8.8 1.483240 9
HF HE None twelfth 1 5 7.8 1.303840 8
LF LE Positive twelfth 1 5 8.0 1.581139 8
HF LE Positive twelfth 1 5 8.2 1.643168 9
HF HE Positive twelfth 1 5 7.4 1.341641 8
LF LE Negative twelfth 1 5) 8.4 1.341641 9
HF LE Negative twelfth 1 ) 8.0 1.224745 8
HF HE Negative twelfth 1 5 7.0 1.581139 7

gt::gt(des1[,c(2:4,10:17)1)

4.2 Draw a few graphs to examine the cell means.

Graphical exploration of several types

4.2.1 First, a clustered box plot

Use the standard boxplot function from base R. Notice how the labels are not always fully
visible. It is possible to use other functions to angle the labels so they can be seen - not worked
out here. With the small N data set from a textbook, some of the plots are not particularly
helpful with this data set, but I show them anyway since the primary goal here is a template
for use with more realistic and larger data sets. Consequently, the boxplots have odd features
in some groups.

10



Wordtype Feedback Grade Trimmed mean mad min max range skew
LF LE None fifth 8.4 1.4826 7 10 3 -0.1656347
HF LE None fifth 8.8 1.4826 7 10 3 -0.5413871
HF HE  None fifth 8.0 0.0000 7 10 3 0.8838835
LF_LE Positive  fifth 7.8 1.4826 6 9 3 -0.5413871
HF LE Positive  fifth 8.0 1.4826 6 9 3 -1.3608276
HF HE  Positive fifth 4.4 1.4826 3 6 3 -0.1656347
LF LE Negative fifth 8.0 0.0000 6 10 4 0.0000000
HF LE Negative fifth 7.6 1.4826 6 9 3 0.1656347
HF HE  Negative fifth 3.8 1.4826 2 5 3 -0.5413871
LF_LE None twelfth 8.4 1.4826 7 10 3 0.4047960
HF LE None twelfth 8.8 1.4826 7 11 4 0.5516181
HF HE  None twelfth 7.8 1.4826 6 9 3 -0.5413871
LF LE Positive  twelfth 8.0 1.4826 6 10 4 0.0000000
HF LE Positive  twelfth 8.2 1.4826 6 10 4 -0.5184205
HF HE  Positive  twelfth 7.4 1.4826 6 9 3 -0.1656347
LF LE Negative twelfth 8.4 1.4826 7 10 3 -0.1656347
HF LE Negative twelfth 8.0 1.4826 6 9 3 -1.3608276
HF HE  Negative twelfth 7.0 1.4826 5 9 4 0.0000000

kurtosi

-2.407407:
-1.487889.
-1.750000¢
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2.000000t
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2.000000
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-0.177514:

0.867768!
-1.487889:
-1.200000¢
-1.687242;
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-2.407407:

2.000000
-1.200000¢

boxplot (numrecall~feedback*wordtype*grade, data=bg.3way,col=c("gray75","gray85","gray95s"),

main="3-way Factorial Design Example",
xlab="Treatment Group",

ylab="NumRecall")
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3—-way Factorial Design Example

;-1 08-8o08  S@reioRy;
E  © ~ 0o o+ - - =0+
z o DH

r 1T 1 1T 17 1T 1T 1T 1T 1T 1T 1T 71T 1T 71T 1T T1
None.LF_LE.fith Positive.HF_HE.fith  None.HF_HE.twelfth

Treatment Group

A different approach to clustered boxplots can be implemented with ggplot2.

ggplot requires a summary of the data that is efficiently provided by the summarySE function.
The column in the table labeled with the DV name is actually a column of cell means.

myData <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback", "wor
myData

feedback wordtype grade N numrecall sd se ci
1 None LF_LE fifth 5 8.4 1.341641 0.6000000 1.665867
2 None LF_LE twelfth 5 8.4 1.140175 0.5099020 1.415715
3 None HF_LE fifth 5 8.8 1.303840 0.5830952 1.618932
4 None HF_LE twelfth 5 8.8 1.483240 0.6633250 1.841685
5 None HF_HE fifth 5 8.0 1.414214 0.6324555 1.755978
6 None HF_HE twelfth 5 7.8 1.303840 0.5830952 1.618932
7 Positive LF_LE fifth 5 7.8 1.303840 0.5830952 1.618932
8 Positive LF_LE twelfth 5 8.0 1.581139 0.7071068 1.963243
9 Positive HF_LE fifth 5 8.0 1.224745 0.5477226 1.520722
10 Positive HF_LE twelfth 5 8.2 1.643168 0.7348469 2.040262
11 Positive HF_HE fifth 5 4.4 1.341641 0.6000000 1.665867
12 Positive HF_HE twelfth 5 7.4 1.341641 0.6000000 1.665867
13 Negative LF_LE fifth 5 8.0 1.414214 0.6324555 1.755978
14 Negative LF_LE twelfth 5 8.4 1.341641 0.6000000 1.665867
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15 Negative HF_LE fifth b 7.6 1.341641 0.6000000 1.665867
16 Negative HF_LE twelfth 5 8.0 1.224745 0.5477226 1.520722
17 Negative HF_HE fifth 5 3.8 1.303840 0.5830952 1.618932
18 Negative HF_HE twelfth 5 7.0 1.581139 0.7071068 1.963243

And now ggplot can create the clustered boxplot graph from that summary object. Since we
have three I'Vs, we need to use the facet_wrap argument to split the plot into sections for the
two levels of the third IV, grade.

p <- ggplot(data=bg.3way, aes(x=feedback, y=numrecall, fill=wordtype)) +
geom_boxplot() +
scale_fill_manual(values = c("grey45", "grey65", "grey75")) +
facet_wrap(~grade,ncol=1)

P
fifth
I [}
9-
B0 B
6- ® | ® I
_ 3- : wordtype
©
S o BE LFLE
= twe
E . Ed HF LE
g EJ HF_HE
T osE Eny W
6- I I °
I
3-
None Positive Negative
feedback

4.2.2 Bar graphs + /- std error bars

Several approaches to the standard bar graph are available. First, use the bargraph.CI
function from the sciplot package. The key to producing side by side panels is to use the
screen function.

13



# bar graphs +/- std error bars
split.screen(figs=c(1,2))

[1] 1 2

screen(1)

sciplot: :bargraph.CI(wordtype,numrecall,group=feedback,1c=TRUE, uc=TRUE,legend=T,
cex.leg=1,bty="n",col=c("gray65","gray80", "gray95") ,ylim=c(0.01,12),
ylab="NumRecall" ,main="Fifth Grade",xlab="WordType Condition",

data=subset (bg.3way,grade == "fifth"))
box ()
axis(4,labels=F)
screen(2)

bargraph.CI(wordtype,numrecall, group=feedback,1c=TRUE, uc=TRUE,legend=T,
cex.leg=1,bty="n",col=c("gray65","gray80","gray95") ,ylim=c(0.01,12),
ylab="NumRecall" ,main="Twelfth Grade",xlab="WordType Condition",

data=subset (bg.3way,grade == "twelfth"))
box ()

axis(4,labels=F)

Fifth Grade Twelfth Grade
S S
_ B None [ | B None

= Positive = O Positive
§ © Negativ§~ § © ivg~
E - 9] i
S < A - S < - -
z z

N~ - N — -

LF_LE HF_LE HF_HE LF_LE HF_LE HF_HE
WordType Condition WordType Condition

close.screen(all = TRUE)
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4.2.3 Bar Graphs with ggplot2

With ggplot2 we have to produce an object that summarizes the data frame first - extracting
means, std errors, and CI’s. I did this with an Rmisc function.

# first, summarize the data set to produce a new data frame that ggplot can use
# just repeating what was done above

myData <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback", "wor
# look at the new data frame that contains the summary statistics
myData

feedback wordtype grade N numrecall sd se ci
1 None LF_LE fifth 5 8.4 1.341641 0.6000000 1.665867
2 None LF_LE twelfth 5 8.4 1.140175 0.5099020 1.415715
3 None HF_LE fifth 5 8.8 1.303840 0.5830952 1.618932
4 None HF_LE twelfth 5 8.8 1.483240 0.6633250 1.841685
5 None HF_HE fifth 5 8.0 1.414214 0.6324555 1.755978
6 None HF_HE twelfth 5 7.8 1.303840 0.5830952 1.618932
7 Positive LF_LE fifth & 7.8 1.303840 0.5830952 1.618932
8 Positive LF_LE twelfth 5 8.0 1.581139 0.7071068 1.963243
9 Positive HF_LE fifth 5 8.0 1.224745 0.5477226 1.520722
10 Positive HF_LE twelfth 5 8.2 1.643168 0.7348469 2.040262
11 Positive HF_HE fifth 5 4.4 1.341641 0.6000000 1.665867
12 Positive HF_HE twelfth 5 7.4 1.341641 0.6000000 1.665867
13 Negative LF_LE fifth & 8.0 1.414214 0.6324555 1.755978
14 Negative LF_LE twelfth 5 8.4 1.341641 0.6000000 1.665867
15 Negative HF_LE fifth 5 7.6 1.341641 0.6000000 1.665867
16 Negative HF_LE twelfth 5 8.0 1.224745 0.5477226 1.520722
17 Negative HF_HE fifth 5 3.8 1.303840 0.5830952 1.618932
18 Negative HF_HE twelfth 5 7.0 1.581139 0.7071068 1.963243

Now, use the myData object to draw the base plot (pl), and then add style control elements.

#library(ggplot2)

#library(ggthemes)

# Now create the Default bar plot

pl <- ggplot(myData, aes(x=feedback, y=numrecall, fill=wordtype)) +
geom_bar (stat="identity", color="black",

position=position_dodge()) +
geom_errorbar (aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,
position=position_dodge(.9)) +

facet_wrap(~grade,ncol=1)

15



p2 <- pl +labs(title="Words Recalled +/- SEM", x="Feedback Group", y = "Mean Number Recalle
theme_bw() +

theme (panel.grid.major.

panel.grid.major.

= element_blank(),

= element_blank(),

element_blank(),

= element blank(),

element_blank(),

axis.line.y = element_line(colour="black", linewidth=.7),

panel.grid.minor.
panel.grid.minor.

< XM < ™
I

panel.background

axis.line.x = element_line(colour="black", linewidth=.7),
plot.title = element_text(hjust=.5)

) +
scale_fill _manual(values=c('honeydew3', 'honeydew2', 'honeydewl'))
print (p2)
Words Recalled +/- SEM
fifth
- —T
s T~ I =71
S 50
@ 5.0 I T
ks 2.51 -
o wordtype
@
L 0.0-
3 |:| LF_LE
= twelfth [:] HF LE
2 T I - T T T T D
=751 [ T T L ¥ S e B HF_HE
< L
2 5.0;
2.5
0.0 1 - - -
None Positive Negative
Feedback Group

The textbook-derived data set used for the initial examples in this document has woefully inad-
equate sample sizes to be a good data set for illustrating several of these graphical approaches,
including the boxplots and kernel density plots. The same is true of the favored “raincloud”
plot, but the code is provided as a template anyway.

ggplot2: :ggplot(bg.3way, aes(x=wordtype, y=numrecall, fill = wordtype)) +

ggrain: :geom_rain(alpha = .5,
point.args.pos = rlang::1list2(position =

16



position_jitter(width = 0.07, height = 0)),
boxplot.args.pos = list(

width = 0.05, position = position_nudge(x = 0.13)),
violin.args.pos = list(

side = "r",
width = 0.7, position = position_nudge(x = 0.2))) +
theme_gray() +
scale_fill _brewer(palette = 'Dark2') +
guides(fill = 'none', color = 'none') +
coord_flip()+
facet_wrap(~grade + feedback, ncol=3) +
xlab("Wordtype") + ylab("Words Recalled")

Wordtype

fifth fifth fifth
None Positive Negative
HF_HE - % ;0 ;1
HF_LE - ‘g 0&41 ;l
LF_LE- jzo. Oo;I .'/T\'
twelfth twelfth twelfth
None Positive Negative
HF_LE - % % ?Q
LF LE- % % ;E

Words Recalled



5 Perform the basic/omnibus 3 way ANOVA

First, detach the attached data frame since aov permits specification of the data frame name.

detach(bg.3way)

5.1 Use the aov function for the base omnibus analysis

Fitting the core model with aov follows a similar logic to that used for 2-way designs. The
model formula could have been written the following way:

# code not run

fit_base.aov <- aov(numrecall~feedback + wordtype + grade +
feedback:wordtype +
feedback:grade +
wordtype:grade +
feedback:wordtype:grade,
data=bg.3way)

The model syntax shown above, naming each effect in the model, is inefficient when we want a
full factorial analysis. It is more efficient to use the asterisk operator which tells aov to create
all higher order terms from the main effects listed.

fit_base.aov <- aov(numrecall~feedback*wordtype*grade,data=bg.3way)

5.1.1 a different way to obtain tables of means and std errors

model.tables is an efficient function, but care must be taken in unbalanced designs to be
certain of whether it produces weighted or unweighted marginal means (I believe that it gives
weighted marginal means). In our example this doesn’t matter since sample sizes are bal-

anced.

model .tables(fit_base.aov, "means",se=T)

Tables of means
Grand mean

7.6
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feedback

feedback
None Positive Negative
8.367 7.300 7.133

wordtype
wordtype
LF_LE HF_LE HF_HE
8.167 8.233 6.400

grade

grade
fifth twelfth
7.2 8.0

feedback:wordtype

wordtype
feedback LF_LE HF_LE HF_HE
None 8.4 8.8 7.9
Positive 7.9 8.1 5.9
Negative 8.2 7.8 5.4
feedback:grade
grade
feedback  fifth twelfth
None 8.400 8.333
Positive 6.733 7.867
Negative 6.467 7.800
wordtype:grade
grade
wordtype fifth twelfth
LF_LE 8.067 8.267
HF_LE 8.133 8.333
HF_HE 5.400 7.400
feedback:wordtype:grade
, , grade = fifth
wordtype
feedback LF_LE HF_LE HF_HE
None 8.4 8.8 8.0

Positive 7.8 8.0 4.4
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Negative 8.0 7.6 3.8

, , grade = twelfth

wordtype
feedback LF_LE HF_LE HF_HE
None 8.4 8.8

O b 001

7.
Positive 8.0 8.2 7.
Negative 8.4 8.0 7.

Standard errors for differences of means
feedback wordtype grade feedback:wordtype feedback:grade

0.3549 0.3549 0.2897 0.6146 0.5018

replic. 30 30 45 10 15
wordtype:grade feedback:wordtype:grade
0.5018 0.8692
replic. 15 5

5.1.2 Obtain ANOVA summary tables

The summary and anova functions produce the same summary table (Type I SS).

summary (fit_base.aov)

Df Sum Sq Mean Sq F value Pr(>F)
feedback 2 26.87 13.43 7.112 0.00152 *x*

wordtype 2 64.87 32.43 17.171 7.99e-07 ***
grade 1 14.40 14.40 7.624 0.00730 **
feedback:wordtype 4 14.67 3.67 1.941 0.11283
feedback:grade 2 8.60 4.30 2.276 0.10999
wordtype:grade 2 16.20 8.10 4.288 0.01740 *
feedback:wordtype:grade 4 10.00 2.50 1.324 0.26946
Residuals 72 136.00 1.89

Signif. codes: O '*¥x' 0.001 '#x' 0.01 'x' 0.056 '.' 0.1 ' ' 1

anova(fit_base.aov)

Analysis of Variance Table
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Response: numrecall

feedback

wordtype

grade

feedback:wordtype
feedback:grade
wordtype:grade
feedback:wordtype:grade
Residuals

Signif. codes: 0O 'xxx!

5.1.3 Refit the model using 1m

Df

N DR, NDN

2
4

Sum Sq Mean Sq F value

26.
64.
14.
14.
8.
16.
10.
72 136.

0.001

867
867
400
667
600
200
000
000

Uk !

13.
32.
14.

= N 0 W

0.01

433
433
400
.667
.300
.100
.500
.889

P!

7.
17.
.6235
.9412
.2765
.2882
.3235

=N e N

0.

1118
1706

05 '.

Pr(>F)
0.001519 *x*
7.993e-07 **x*
0.007304 *x

0.112829
0.109987
0.017397 =
0.269461

"0.1 " "1

It is worth recalling that since aov is a wrapper for 1m, we can we refit the model, using the
1m function. This produces the same anova summary table as when we used aov above, so
the residuals are the same. This approach will become useful when we examine analysis of

contrasts, in unequal N designs.

# do the 3 way anova with the 1m function
fit.11lm <- lm(numrecall-~feedback*wordtype*grade,data=bg.3way)

#summary (fit.11m)
anova(fit.11lm)

Analysis of Variance Table

Response: numrecall

feedback

wordtype

grade

feedback:wordtype
feedback:grade
wordtype:grade
feedback:wordtype:grade
Residuals

Signif. codes: 0O 'xxx!

Df

NN D= NN

4

Sum Sq Mean Sq F value

26.
64.
14.
14.
8.
16.
10.
72 136.

0.001

867
867
400
667
600
200
000
000

Tk !

13.
32.
14.

= N 00D W

0.01

433
433
400
.667
.300
.100
.500
.889
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7.
17.
.6235
.9412
.2765
.2882
.3235

=N =N

0.

1118
1706

05 '.

Pr (>F)
0.001519 **
7.993e-07 **x*
0.007304 *x

0.112829
0.109987
0.017397 =
0.269461

0.1 ' "1



Effect df MSE F ges p.value

feedback 2,72 1.89 7.11 ** 127 .002
wordtype 2, 72 1.89 17.17 H** 259 <.001
grade 1, 72 1.89 7.62 ** 078 .007
feedback:wordtype 4,72 1.89 1.94 073 113
feedback:grade 2,72 1.89 2.28 .046 110
wordtype:grade 2,72 1.89 4.29 * .087 017
feedback:wordtype:grade 4,72 1.89 1.32 .054 .269

5.2 Use the afex package for the omnibus ANOVA

An alternative that provides some advantages is the suite of ANOVA tools from afex. aov_car
gives type III SS and tests (by default), plus the ges effect size statistic.

Note that the “grade” factor is specified as an “observed” variable. This impacts the method
of calculating the generalized effect sizes.

fit_base.afex <- aov_car(numrecall-~feedback*wordtypexgrade + Error(l|snum), type=3, observed
gt::gt(nice(fit_base.afex))

6 Effect sizes for the Omnibus Analysis

The anova_stats function is a convenient way to obtain a multiplicity of effect sizes on the
omnibus effects. However the downside of using it is that it will not work on an afex object. 1
show it here with the original aovfit. The issue (downside) is that the aov fit is likely based on
Type I SS. Below this section, the effectsize package is use on the afex fit which employed
Type III SS. In the equal N situation with the current data set there is no distinction, but for
unbalanced designs, the effectsize/afex approach may be better.

# the gt function permits nicer formatting of the table
# anova_stats(fit_base.aov)
gt (anova_stats(fit_base.aov) [1:7,1:6] ,rownames_to_stub = T)

Using the effectsize package, we can compute eta squareds (and partial eta squareds) using
the afex fit with type III SS. Another nice feature of the effectsize functions is that confidence
intervals are provided for the effect size estimates.
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‘etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f

feedback 0.092 0.165 0.079 0.120 0.079
wordtype 0.222 0.323 0.208 0.264 0.209
grade 0.049 0.096 0.043 0.069 0.043
feedback:wordtype 0.050 0.097 0.024 0.040 0.024
feedback:grade 0.029 0.059 0.016 0.028 0.017
wordtype:grade 0.056 0.106 0.042 0.068 0.043
feedback:wordtype:grade | 0.034 0.068 0.008 0.014 0.008
Parameter Cohens f{ partial CI CI low CI__high
feedback 0.4444649 0.95 0.17538133 0.6726748
wordtype 0.6906235 0.95 0.41823382 0.9372685
grade 0.3253957 0.95 0.08662186 0.5613204
feedback:wordtype 0.3283948 0.95 0.00000000 0.5140729
feedback:grade 0.2514663 0.95 0.00000000 0.4649734
wordtype:grade 0.3451342 0.95 0.05487871 0.5662212
feedback:wordtype:grade 0.2711631 0.95 0.00000000 0.4454608

0.444
0.691
0.325
0.328
0.251
0.345
0.271

gt::gt(effectsize: :cohens_f (fit_base.afex, partial=TRUE, ci=.95, alternative="two"))

# or other effect sizes

#gt::gt(effectsize: :cohens_f(fit_base.afex, partial=TRUE, ci=.95, alternative="two"))

#gt::gt(effectsize: :omega_squared(fit_base.afex, partial=TRUE, ci=.95, alternative="two"))

7 Evaluate Assumptions

The normality and homoscedasticity /homogeneity assumptions are evaluated in the standard

manner we covered for other linear models and ANOVA objects.

7.1 First, produce the diagnostic plots for linear models

The standard two plots for evaluating homoscedasticity and normality of the residuals are
available in the same manner as for other linear model objects that we have seen previously.

plot(fit_base.aov,which=1)
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Residuals vs Fitted

~ o 130 550
o} 0 5 o
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! e
[ [ [ [ [
4 5 6 7 8 9

Fitted values
aov(numrecall ~ feedback * wordtype * grade)

plot(fit_base.aov,which=2)

Q-Q Residuals

Standardized residuals
0
|

— I I I
-2 -1 0 1 2

Theoretical Quantiles
aov(numrecall ~ feedback * wordtype * grade)

The qgPlot function from the car package produces a nice normal QQ plot.
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car::qqPlot(fit_base.aov$residuals)

fit base.aov$residuals
0
|

-2

norm quantiles

[1] 66 55

There is clearly some non-normality in the distribution of these residuals so let’s examine a
frequency histogram with a kernel density overlaid.

hist(fit_base.aov$residuals, breaks=10, prob=TRUE)
lines(density(fit_base.aov$residuals))
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Histogram of fit_base.aov$residuals

<
3 -
™ _]
o | ——
= ]
(]
a)
—
o'—/ \
o__/
o | I I I |
-2 -1 0 1 2

fit_base.aov$residuals

Or use the explore function from the bedstats package on the aov fit object from above.

bcdstats: :explore(residuals(fit_base.aov) ,varname="Residuals from Omnibus Model")

lvariate Plots of Residuals from Omnibus Mo

Freq Histogram Freq Histogram Boxplot
with Normal Distributionvith Kernel Density  with data and me
. 04 . 04 5 i
=03 =03 1 X.
(7] (7]
202 202 - 0 E’1
Jo1 Jo1 4
0.0 0.0
2-10 1 2 2-10 1 2 -2
X X
&  Symmetry Plot QQ normal plot Kernel Density
g skewness = -0.128 with bootstrapped CI with Quartiles
<

g £ / o
el O o0 >
o () _ ° 01
) 5 %5
O 0.0 c 0.0
% 0.0 05 1.0 1.5 2.0 @ -2 0 2 -2 0 2
» Distance below median®®  Theoretical Quantiles X
(@)
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vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 90 01.24 0.1 0.01 1.63 -2.2 2.2 4.4 -0.12 -1.2 0.13

7.2 Inferential tests of the Normality and Homogeneity of Variance assumptions

We can see some non-normality of the residuals from the graphical displays, so inferential tests
might be in order. The Anderson-Darling test rejects the null hypothesis that residuals are
normally distributed.

nortest::ad.test(residuals(fit_base.aov))

Anderson-Darling normality test

data: residuals(fit_base.aov)
A = 1.5133, p-value = 0.0006257

A Shapiro-Wilk test reaches the same conclusion.

shapiro.test(residuals(fit_base.aov))

Shapiro-Wilk normality test

data: residuals(fit_base.aov)
W = 0.94663, p-value = 0.001042

The Levene test for homogeneity of variance is obtained using the function from the car pack-
age. Very little variation in cell variances/stdevs was seen and this test was not significant.

car::leveneTest(fit_base.aov)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 17 0.0897 1
72

The Breusch Pagan test of homoscedasticity leads to a similar outcome, as does the non-
constant variance test.
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Ilmtest: :bptest(fit_base.aov)

studentized Breusch-Pagan test

data: fit_base.aov
BP = 4.1174, df = 17, p-value = 0.9994

car::ncvTest(fit.11lm)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 0.008655078, Df = 1, p = 0.92588

Since the normality assumption appears to have been violated, this data set should be submit-
ted to alternative approaches. DV scale transformations, bootstrapping, other robust analyses
or Bayesian inference might be considered. These alternatives are not yet incorporated into
this tutorial.

8 Orthogonal Contrasts on the Omnibus Effects

We will obtain partitioning of omnibus effects into their single df contrasts here and later use
the emmeans and phia packages both for contrasts and simple effects.

8.1 Work with the split argument and the summary.1lm function to obtain
contrasts on omnibus effects.

The Feedback and Wordtype factors both have three levels and are now decomposed into a pair
of orthogonal contrasts each. For Feedback, the first contrast compares the negative condition
to the average of the other two and the second contrasts compares none and positive. For
realistic applications of these methods, the choice of explicit contrasts should be made on * a
priori* grounds. For this tutorial, with a textbook example, the choice was based on the fact
that for feedback, group 3 was the control condition, so a 1-, -1, 2 contrast seemed appropriate.
and the second one is the orthogonal one to that contrast.

contrasts.feedback <- matrix(c(-1,-1,2,-1,1,0),ncol=2)

contrasts(bg.3way$feedback) <- contrasts.feedback
contrasts (bg.3way$feedback)
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[,1]1 [,2]
None -1 -1
Positive -1 1
Negative 2 0

For the Wordtype variable, the first contrast compares LF__LE to the other two, and the second
compares HF-LE to HF _HE. I chose this set somewhat arbitrarily since we don’t have explicit
information on theory that would drive contrasts for this factor in this textbook illustration.

contrasts.wordtype <- matrix(c(2,-1,-1,0,-1,1),ncol=2)
contrasts (bg.3way$wordtype) <- contrasts.wordtype
contrasts(bg.3way$wordtype)

[,11 [,2]
LFLE 2 0
HF_ LE -1 -1
HF HE -1 1

It is worth recalling that the two-level factor, “grade” can already be conceptualized as a
contrast since it has only 1 df. However, the default coding for “grade” is still in place and
that is dummy coding.

contrasts(bg.3way$grade)

twelfth
fifth 0
twelfth 1

It is best to change that to “sum to zero” coding as well so that interpretation of regression
coefficients and effects is straight forward.

contrasts.grade <- matrix(c(l,-1),ncol=1)

contrasts(bg.3way$grade) <- contrasts.grade
contrasts (bg.3way$grade)

[,1]
fifth 1
twelfth -1
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I will redo the basic omnibus ANOVA here and the use the split function to obtain tests of

contrasts.

fit.laov <- aov(numrecall~feedback*wordtype*grade,data=bg.3way)

#summary (fit.1laov)
anova(fit.laov)

Analysis of Variance Table

Response: numrecall

feedback
wordtype

grade
feedback:wordtype
feedback:grade
wordtype:grade

feedback:wordtype:grade 4 10.000

Residuals

Df Sum Sq Mean Sq F v
2 26.867 13.433 7.
2 64.867 32.433 17.
1 14.400 14.400 7
4 14.667 3.667 1
2 8.600 4.300 2
2 16.200 8.100 4

2.500 1

72 136.000 1.889

Signif. codes: O '**x' 0.001 '%x' 0.01 'x' O.

alue
1118
1706

.6235
.9412
.2765
.2882
.3235

05 '.

Pr (>F)
0.001519
7.993e-07
0.007304
0.112829
0.109987
0.017397
0.269461

1 0.1 ' 1

%k %k
X%k
%k %k

*

1

The initial application of this approach includes partitioning of both the Feedback and Word-
type factors. Grade is only two levels, so requires no further decomposition. Notice that
summary now produces all eleven single df contrasts among the twelve cells, breaking down
main effects and interactions involving Feedback and Wordtype.

summary (fit.laov, split=list(feedback=1list(feedback.acl=1,
wordtype=1list (wordtype.acl=1,

feedback
feedback: feedback.
feedback: feedback.
wordtype
wordtype: wordtype.
wordtype: wordtype.
grade
feedback:wordtype
feedback:wordtype:
feedback:wordtype:

acl
ac2

acl
ac2

feedback.acl.wordtype.acl
feedback.ac2.wordtype.acl
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Df Sum
26.

N

17.
64.
14.
50.
14.
14.

[ N Y O S O N

feedback.ac2=2),
wordtype.ac2=2)))

Sq Mean Sq F value

87

.80

07
87
45
42
40
67

.63
.41

13.

9.
17.
32.
14.
50.
14.

43
80
07
43
45
42
40

3.67
5.
2.41

63

7.
.188

9.
17.

7.
26.
.624
.941
.978
.275

5

= N - N

112

035
171
650
691



feedback:wordtype: feedback.acl.wordtype.ac?2
feedback:wordtype: feedback.ac2.wordtype.ac2

feedback:grade

feedback:grade: feedback.
feedback:grade: feedback.

wordtype:grade

wordtype:grade: wordtype.
wordtype:grade: wordtype.

feedback:wordtype:grade

feedback:wordtype

feedback:wordtype

feedback:wordtype

feedback:wordtype
Residuals

feedback

:grade:
:grade:
:grade:
:grade:

feedback: feedback.acl
feedback: feedback.ac?2

wordtype

wordtype: wordtype.acl
wordtype: wordtype.ac2

grade
feedback:wordtype

feedback:wordtype:
feedback:wordtype:
feedback:wordtype:
feedback:wordtype:

feedback:grade

feedback:grade: feedback.
feedback:grade: feedback.

wordtype:grade

wordtype:grade: wordtype.
wordtype:grade: wordtype.

feedback:wordtype:grade

feedback:wordtype

feedback:wordtype

feedback:wordtype

feedback:wordtype
Residuals

Signif. codes: O '*xxx'

:grade:
:grade:
:grade:
:grade:

acl
ac2

acl
ac2

feedback.acl.wordtype.
feedback.ac2.wordtype.
feedback.acl.wordtype.
feedback.ac2.wordtype.

feedback.
feedback.
feedback.
feedback.

acl
ac2

acl
ac2

feedback.acl.wordtype.
feedback.ac2.wordtype.
feedback.acl.wordtype.
feedback.ac2.wordtype.

0.001

.wordtype.acl
.wordtype.acl
.wordtype.ac2
.wordtype.ac2

0.01 'x' 0.05

acl
acl
ac2
ac?2

acl
acl
ac?2
ac2

[ N SN T = S N, R SOy

1
72

0
0
0
7.
0
2.

O O O O O OO OO OO OOoO oo oo

.41
.22
.60
.20
.40
16.20
4.05
12.15
10.00
0.63
1.88
1.88
5.62
136.00
Pr (>F)
.00152
.02571
.00364
99e-07
.00721
05e-06
.00730
.11283

g W 00N

%k k

k%
%k %k %k
k%
%k %k %k
k%

.08870 .

.26258
.26258
.13913
.10999
.19721
.09520
.01740
.14747
.01338
.26946
.56693
.32243
.32243

.08870 .

L O L |

B 00 O Wk N

1

N

= O, =, ON

.41
.22
.30
.20
.40
.10
.05
.15
.50
.63
.88
.88
.62
.89

N O OO, ONPMPNENNE

.275
.237
.276
.694
.859
.288
.144
.432
.324
.331
.993
.993
.978

If we only pass one variable at a time to the split function, the resulting ANOVA table yields
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interaction comparisons instead of interaction contrasts.

summary (fit.laov, split=list(feedback=1list(feedback.acl=1, feedback.ac2=2)))

Df Sum Sq Mean Sq F value
feedback 2 26.87 13.43 T7.112 O

feedback: feedback.acl 1 9.80 9.80 5.188 0
feedback: feedback.ac2 1 17.07v 17.07 9.035 O
wordtype 2 64.87 32.43 17.171 7.
grade 1 14.40 14.40 7.624 O
feedback:wordtype 4 14.67 3.67 1.941 O
feedback:wordtype: feedback.acl 2 8.03 4.02 2.126 O
feedback:wordtype: feedback.ac2 2 6.63 3.32 1.756 O
feedback:grade 2 8.60 4.30 2.276 O
feedback:grade: feedback.acl 1 3.20 3.20 1.694 O
feedback:grade: feedback.ac2 1 5.40 5.40 2.859 O
wordtype:grade 2 16.20 8.10 4.288 0
feedback:wordtype:grade 4 10.00 2.50 1.324 O
feedback:wordtype:grade: feedback.acl 2  2.50 1.26 0.662 0
feedback:wordtype:grade: feedback.ac2 2 7.50 3.75 1.985 O
Residuals 72 136.00 1.89
Signif. codes: O '**xx' 0.001 '*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Similarly, with only Wordtype partitioned.......

summary (fit.laov, split=list(wordtype=list(wordtype.acl=1, wordtype.

Df Sum Sq Mean Sq F value

feedback 2 26.87 13.43 T7.112 O
wordtype 2 64.87 32.43 17.171 7.
wordtype: wordtype.acl 1 14.45 14.45 7.650 O
wordtype: wordtype.ac2 1 50.42 50.42 26.691 2.
grade 1 14.40 14.40 7.624 O
feedback:wordtype 4 14.67 3.67 1.941 O
feedback:wordtype: wordtype.acl 2 8.03 4.02 2.126 O
feedback:wordtype: wordtype.ac2 2 6.63 3.32 1.756 O
feedback:grade 2 8.60 4.30 2.276 O
wordtype:grade 2 16.20 8.10 4.288 0
wordtype:grade: wordtype.acl 1 4.05 4.05 2.144 O
wordtype:grade: wordtype.ac2 1 12.15 12.15 6.432 O
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Pr(>F)
.00152
.02571
.00364
99e-07
.00730
.11283
.12669
.18007
.10999
.19721
.09520
.01740
.26946
.51905
.14479

Pr(>F)
.00152
99e-07
.00721
05e-06
.00730
.11283
.12669
.18007
.10999
.01740
.14747
.01338

*k

*%
*kk
*%

ac2=2)))

*ok
*okk
*ok
K%k
*ok



feedback:wordtype:grade 4 10.00 2.50 1.324 0.26946
feedback:wordtype:grade: wordtype.acl 2  2.50 1.26 0.662 0.51905
feedback:wordtype:grade: wordtype.ac2 2 7.50 3.75 1.985 0.14479

Residuals 72 136.00 1.89

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

8.1.1 A WORD OF CAUTION

Please recall from work in the 2-way design and the oneway tutorial that use of this split
function, while fairly simple, produces Type I SS decompositions when sample sizes are unequal.
This may not be desirable, so other approaches are necessary (such as summary.lm). Others
are outlined below using the emmeans or phia packages.

When we apply the summary.lm function to an aov object, the resultant table is a table of
the regression coefficients for the model. The t-tests here are tantamount to tests of Type III
SS and may be more desirable when sample sizes are unequal. In our example, the squares
of these t values equal the F tests from the summary tables above where split was use. But
that was ONLY because sample sizes were equal in this example.

summary.lm(fit.laov)

Call:
aov(formula = numrecall ~ feedback * wordtype * grade, data = bg.3way)

Residuals:
Min 1Q Median 3Q Max
-2.2 -1.0 0.1 1.0 2.2

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 7.60000 0.14487 52.460 < 2e-16 *x*x
feedbackl -0.23333 0.10244 -2.278 0.02571 *
feedback2 -0.53333 0.17743 -3.006 0.00364 *x*
wordtypel 0.28333 0.10244 2.766 0.00721 **
wordtype2 -0.91667 0.17743 -5.166 2.05e-06 **x*
gradel -0.40000 0.14487 -2.761 0.00730 **
feedbackl:wordtypel 0.12500 0.07244 1.726 0.08870 .
feedback2:wordtypel 0.14167 0.12546 1.129 0.26258
feedbackl:wordtype2 -0.14167 0.12546 -1.129 0.26258
feedback2:wordtype2 -0.32500 0.21731 -1.496 0.13913
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feedbackl:gradel -0.13333 0.10244 -1.302 0.19721
feedback2:gradel -0.30000 0.17743 -1.691 0.09520 .
wordtypel:gradel 0.15000 0.10244 1.464 0.14747
wordtype2:gradel -0.45000 0.17743 -2.536 0.01338 *
feedbackl:wordtypel:gradel 0.04167 0.07244 0.575 0.56693
feedback2:wordtypel:gradel 0.12500 0.12546 0.996 0.32243
feedbackl:wordtype2:gradel -0.12500 0.12546 -0.996 0.32243
feedback2:wordtype2:gradel -0.37500 0.21731 -1.726 0.08870 .
Signif. codes: O '**xx' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.374 on 72 degrees of freedom
Multiple R-squared: 0.5336, Adjusted R-squared: 0.4235
F-statistic: 4.846 on 17 and 72 DF, p-value: 9.884e-07

9 Follow up analyses to evaluate contrasts and simple effects

Analysts have a pair of major choices to make about following up the omnibus effects out-
lined above. One choice is whether to follow up the omnibus analysis with pairwise types of
comparisons using a function such as pairwise.t.test (or pairs in emmeans) along with
alpha rate adjustment or with post hoc multiple comparison tests versus a followup method
that employs contrasts (perhaps orthogonal). A second choice is whether to obtain simple
effects and contrast effects with ghlt, emmeans, or phia. This document demonstrates the
contrast approach using the latter two packages (ghlt may be added on later). Some multiple
comparison approaches are integrated into the demonstration of the use of emmeans.

Arbitrarily, the next section demonstrates use of phia first and then emmeans is used in
the following section. “phia” stands for “Post Hoc Interaction Analysis”, a label that I find
unfortunate. I have argued that a strength of employing contrast analysis is that it should
emanate from a priori hypotheses which then inform the values of the contrast coefficients.
Nonetheless, phia, and its testInteractions function is a very powerful tool for evaluating
simple effects and their contrasts, main effect contrasts, and interaction contrasts. That is the
primary usage here.

For uses of both phia and emmeans (in the later section) it is required to have already
performed the omnibus full factorial ANOVA. For these omnibus analyses, it is best to have
had in place either “effect/deviation” coding or orthogonal contrast coding. But the use of
these two packages can be seen as adding contrast and simple effect analyses on to the omnibus
analysis. Full orthogonal sets are not even necessary since the contrasts obtained are not being
used to create the full omnibus model which might have already been generated using deviation
coding schemes.
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Two different motivations exist for using either phia or emmeans in order to evaluate con-
trasts and simple effects. The first is that they produce inferential tests based on Type III
SS decompositions. The second is that they are the only way I know to obtain simple effects,
aside from manual computations.

In the particular data set we are working with here, the only higher order effect that was
significant was the Wordtype by Grade interaction. This means that we would typically only
follow up that effect by looking at simple main effects of one of those factors at levels of
the other, as well as their interaction contrasts. We would also follow up with contrasts on
the Feedback factor since its main effect was significant and no interactions with Feedback
were significant. Of course this logic is a prime example of traditional thinking about NHST
methods and use of the word significance which are both under scrutiny now.

However, the approach taken here is designed to demonstrate how the whole suite of effects
can be obtained.

10 Use of the phia package for simple effects and contrasts

Initially this document uses the phia package for these evaluations and makes extensive use of
the testInteractions function from that package. The methods by “holm”, and “Hochberg”
are possible for p value adjustments with contrasts. emmeans is demonstrated in the next
section.

It is worth repeating display of the full set of means in a bar graph so that some of these effects
can be visualized.

# #| code-summary: "Show/Hide Code"
p2

35



Words Recalled +/- SEM

fifth
T T

N = I+
e i
D 5.0 I -
BT -
o wordtype
X 50
5 0.0 |:| LF_LE
g twelfth |:| HE LE
S T B
z I T T T — T I:l
Z 751 == T o e B 131 - HF_HE
8 L
S 507

2.51

0.01

None Positive Negative
Feedback Group

10.1 Simple two way interactions

Simple two way interactions can also be obtained (three sets). We don’t expect to be interested
in any of these since the three way interaction was not significant, but we might have had an
a-priori hypothesis about one or more of them, so illustration is included for that possibility
and for completeness of this template document.

The information in the tables produced by the testInteractions function is not orga-
nized/labeled in a user-friendly manner. Each of the rows of the tables below represent
tests of the simple two-way at that level of the factor in which the effects are examined
(e.g.,feedback by grade at levels of grade in the first illustration).

The general strategy in the testInteractions function is to use an argument called “fixed”
to specify the variable at which effects of other factors are to be examined in simple effects.
The “across” argument specifies a variable for which the effect is being requested.

Note that the combined effects of two variables are requested by putting both of them in
the “across” argument - the variable @ which these effects are examined is designated by the
“fixed” argument.

Reading the table requires some understanding of the idiosyncracies of testInteractions
formatting. There is one large table (three rows, including a row for residuals) and it may have
wrapped into three sections in some Quarto renderings. The columns labeled (for example)
feedbackl:wordtypel are indeed, interactions as the colon implies. The numeric appendage
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(e.g., feedbackl) means a contrast. The numeric values (e.g., 6, 3.2, etc) are “estimates” of
the underlying interaction contrast. But since we are not examining contrasts here we can
ignore these columns. They are used to compile the F test of each of the simple two way
interactions.

The F tests are tests of the two different simple two way interactions at the two levels of grade.
At least the question of level of grade is clear in the table - rows. Note that the numerator of
the two F tests both have 4 df, as they should since the effects are interactions of wordtype and
feedback, both 3 level factors. Also note that the df and SS for the Residual term matches that
for the omnibus analysis - each of these simple two-way interactions is tested by the omnibus
MSwg term as expected for an appropriate analysis rather than fully separating the analysis
into two parts.

To be clear, the F value of 3.0882 tests the simple 2 way interaction of feedback and wordtype
at fifth graders. And the F value of .1765 tests the simple two way interaction of feedback and
wordtype at twelfth graders.

# feedback*wordtype at levels of grade
testInteractions(fit.laov,fixed=c("grade"), across=c("feedback", "wordtype"),adjust="none"

F Test:
P-value adjustment method: none
feedbackl:wordtypel feedback2:wordtypel feedbackl:wordtype2

fifth 6 3.2 -3.2
twelfth 3 0.2 -0.2
Residuals
feedback2:wordtype2 SE1 SE2 SE3 SE4 Df Sum of Sq F
fifth -2.8 3.688 2.129 2.1292 1.2293 4  23.3333 3.0882
twelfth 0.2 3.688 2.129 2.1292 1.2293 4 1.3333 0.1765
Residuals 72.000 136.000
Pr (>F)

fifth 0.02098 x*
twelfth 0.94983
Residuals

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Looking back at the graph, one can see that in fifth graders, the two lower means in the Positive
and Negative HF__HE groups is what is driving the simple two-way there. That pattern is not
present in the twelfth graders, although the pattern exists, just much smaller in magnitude.

The analyst would likely never do all of the three possible sets of simple two-way interactions.
One one should suffice and it would probably be the one where the two primary IVs were
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interacted. In our example, the first one fits the way the ggplot bar graph is drawn so that
is probably what the choice would be. The reader can see the patterns that generate the two
simple two-way interactions in the upper and lower facets of that ggplot bar graph. Note
that the test of the simple two-way of wordtype and feedback at fifth grade is significant
by traditional NHST methodologies (p <.05), but the other simple two-way is not. This
distinction cannot be taken as evidence that the three-way interaction is present - in fact that
was tested and found N.S. This apparently illogical outcome is not uncommon with NHST in
factorial designs.

The other two possible simple two way interactions are shown here for the sake of illustration
of testInteractions usage.

A second possible set of simple two way interactions is examined next, wordtype by grade
at levels of feedback. The three F tests are the tests of the three different simple two way
interactions of wordtype and grade at the three levels of feedback (rows). Also note that their
df of 2 is what is expected.

# wordtypexgrade at levels of feedback
testInteractions(fit.laov,fixed=c("feedback"), across=c("wordtype",'"grade"),adjust="none")

F Test:
P-value adjustment method: none
wordtypel wordtype?2 SE1 SE2 Df Sum of Sq F Pr(>F)

None -0.2 0.2 2.129 1.229 2 0.0667 0.0176 0.98251
Positive 2.8 -2.8 2.129 1.229 2 13.0667 3.4588 0.03679 *
Negative 2.8 -2.8 2.129 1.229 2 13.0667 3.4588 0.03679 *
Residuals 72.000 136.000
Signif. codes: O '**xx' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

And now the third set:

# feedback*grade at levels of wordtype
testInteractions(fit.laov,fixed=c("wordtype"), across=c("feedback","grade"),adjust="none")

F Test:
P-value adjustment method: none

feedbackl feedback?2 SE1 SE2 Df Sum of Sq F Pr(oF)
LF_LE -0.6 -0.2 2.129 1.229 2 0.2 0.0529 0.94847
HF_LE -0.6 -0.2 2.129 1.229 2 0.2 0.0529 0.94847
HF_HE -3.6 -3.2 2.129 1.229 2 18.2 4.8176 0.01087 *
Residuals 72.000 136.000
Signif. codes: 0 '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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10.2 Simple-simple main effects

These are effects of one factor at combined levels of two other factors.

First examine the so-called simple, simple main effects (three different sets). These
effects would be assessed after finding significant simple two way interactions. Notice
that the testInteractions function accepts an argument for p value adjustment (e.g.,
bonferroni/holm/fdr), but that I've set it to “none” in these illustrations.

The general strategy in the testInteractions function is to use an argument called “fixed”
to specify the variable at which effects of other factors are to be examined in simple effects.
The “across” argument specifies a variable for which the effect is being requested.

The first set here examines effects of wordtype at combinations of the other two factor levels
and is one of the sets of simple simple main effects most visible from the ggplot bar graph
above.

Here, and for later tables, “values” of effects are differentiated by the contrasts associated with
the factors although those are aggregated to obtain the simple effects - this is confirmed since
many of them have multiple df. We are ignoring those “effect” values here since we have not
addressed the contrasts in place at the time the aov fit was done (default is dummy coding
but we changed it to orthogonal contrast coding at the beginning of this section). The exact
choice of contrast set doesn’t influence the 2 df simple simple main effects here.

Notice that each of these simple simple main effects in this first set have 2 df (three means
compared, so 2 df). Later we will break the effects down into contrasts. Compare the signifi-
cance test results to the ggplot bar graph. The only significant simple simple main effects in
this table are the wordtype comparisons in the upper panel (fifth grade) for the negative and
positive feedback conditions. This pattern of significance fits what the eye sees in the graph.

# 1, effects of wordtype @ combinations of feedback and grade
testInteractions(fit.laov,fixed=c("feedback","grade"), across="wordtype",adjust="none")

F Test:
P-value adjustment method: none
wordtypel wordtype2 SE1 SE2 Df Sum of Sq F
None : fifth 0.0 -0.8 1.506 0.869 2 1.600 0.4235
Positive : fifth 3.2 -3.6 1.506 0.869 2 40.933 10.8353
Negative : fifth 4.6 -3.8 1.506 0.869 2 53.733 14.2235
None : twelfth 0.2 -1.0 1.506 0.869 2 2.533 0.6706
Positive : twelfth 0.4 -0.8 1.506 0.869 2 1.733 0.4588
Negative : twelfth 1.8 -1.0 1.506 0.869 2 5.200 1.3765
Residuals 72.000 136.000

Pr (>F)
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None : fifth 0.6564
Positive : fifth 7.696e-05 *x*x*
Negative : fifth 6.226e-06 *x*x

None : twelfth 0.5146
Positive : twelfth 0.6339
Negative : twelfth 0.2590
Residuals

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We could also look at other sets of simple simple main effects but would probably only look at
one (such as the immediately preceding one), followed up by contrasts (later in this doc).

# 2, effects of grade @ combinations of feedback and wordtype
testInteractions(fit.laov,fixed=c("feedback","wordtype"), across="grade",adjust="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F Pr(>F)
None : LF_LE 0.0 0.869 1 0.0 0.0000 1.0000000
Positive : LF_LE -0.2 0.869 1 0.1 0.0529 0.8186747
Negative : LF_LE -0.4 0.869 1 0.4 0.2118 0.6467745
None : HF_LE 0.0 0.869 1 0.0 0.0000 1.0000000
Positive : HF_LE -0.2 0.869 1 0.1 0.0529 0.8186747
Negative : HF_LE -0.4 0.869 1 0.4 0.2118 0.6467745
None : HF_HE 0.2 0.869 1 0.1 0.0529 0.8186747
Positive : HF_HE -3.0 0.869 1 22.5 11.9118 0.0009371 **x*
Negative : HF_HE -3.2 0.869 1 25.6 13.5529 0.0004450 *x*x*
Residuals 72.000 136
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

And the third possible set of simple simple main effects:

# 3, effects of feedback @ combinations of grade and wordtype
testInteractions(fit.laov,fixed=c("grade","wordtype"), across="feedback",adjust="none")

F Test:
P-value adjustment method: none
feedbackl feedback2 SE1 SE2 Df Sum of Sq F
fifth : LF_LE -0.2 -0.6 1.506 0.869 2 0.933 0.2471
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twelfth : LF_LE 0.4 -0.4 1.506 0.869 2 0.533 0.1412
fifth : HF_LE -1.6 -0.8 1.506 0.869 2 3.733 0.9882
twelfth : HF_LE -1.0 -0.6 1.506 0.869 2 1.733 0.4588
fifth : HF_HE -4.8 -3.6 1.506 0.869 2 51.600 13.6588
twelfth : HF_HE -1.2 -0.4 1.506 0.869 2 1.600 0.4235
Residuals 72.000 136.000
Pr (>F)
fifth : LF_LE 0.7818
twelfth : LF_LE 0.8686
fifth : HF_LE 0.3772
twelfth : HF_LE 0.6339
fifth : HF_HE 9.354e-06 **x
twelfth : HF_HE 0.6564
Residuals
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

10.3 Simple main effects

In studies where the 3way interaction is not significant, the traditional approach would advise
the analyst to progress with examination the omnibus 2way interactions. If any are significant
then they would partly be characterized by examining simple main effects (there are six possible
sets here, two each for each of the three possible 2way interactions).

It is not possible to interpret such simple main effects without reference to the tables of
collapsed /marginal means such as those produce above following the initial aov fit OR by
examining the redrawn graph that depicts 2way layouts, collapsed on one of the three factors.

Such a redrawn graph is presented here, to depict the two way layout of wordtype and feedback
(a 3x3 structure), since the first of the six sets of SME shown here examines the effect of
wordtype at levels of feedback. If this were actual data analysis of a true data set (rather
than a textbook/artifical one), then we would only look to follow up the wordtype by grade
two way interaction since it was the only one of the three that reached traditional significance
levels. But this first graphical illustration permits seeing the more complex 3x3 arrangement,
even though the wordtype by feedback interaction was NS. The reader should recognize that
the effects of wordtype (seen in the plot below) appear to depend on level of feedback.

From this depiction, we might expect to find an effect of wordtype only in the negative and
positive feedback conditions. In reality the 2-way interaction tests whether the wordtype effect
is different in the three levels of feedback. It was the general impression that the HF__HE group
is lower only in the positive and negative feedback levels. Nontheless while this impression is
clear, the difference was not significant with the wordtype by feedback interaction was tested.
In this instance the F test result does not match up with the eyeball test - but that is why a
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test is done. We won’t dwell on this seeming paradox since the point of this document is more
oriented to providing a template than fully to evaluate a textbook data set (remember, low n
means low power).

# first, summarize the data set to produce a new data frame that ggplot can use

myData2.wg <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback",
# look at the new data frame that contains the summary statistics

myData2.wg

#library(ggplot2)
#library(ggthemes)
# Now create the Default bar plot
p3 <- ggplot(myData2.wg, aes(x=feedback, y=numrecall, fill=wordtype)) +
geom_bar (stat="identity", color="black",
position=position_dodge()) +
geom_errorbar (aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,
position=position_dodge(.9))

p4 <- p3 +labs(title="Words Recalled +/- SEM", x="Feedback", y = "Mean Number Recalled")+
theme bw() +
theme (panel.grid.major.
panel.grid.major.
panel.grid.minor.
panel.grid.minor. element_blank(),
panel.background = element_blank(),
axis.line.y = element_line(colour="black", linewidth=.7),
axis.line.x = element_line(colour="black", linewidth=.7),
plot.title = element_text(hjust=.5)
) +
scale_fill_manual (values=c('honeydew3', 'honeydew2', 'honeydewl'))
p4

= element_blank(),
element _blank(),
element_blank(),

< XM < ™
]
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The following sequence of tests of six sets of simple main effects is presented only to demon-
strate how to generate each of them. We would probably only examine number 3 or 4.

In the first analysis we find that in the both the negative feedback condition the effect of
feedback significant, as the graph seems to suggest. But note that most of the difference is
due to the position of the HF HE group. We would pursue that pattern with examination of
simple main effect contrasts.

# 1-2 effects of wordtype at levels of feedback, and then feedback at levels of wordtype
# note these are collapsed on grade
testInteractions(fit.laov,fixed="feedback", across="wordtype",adjust="none")

F Test:
P-value adjustment method: none
wordtypel wordtype2 SE1 SE2 Df Sum of Sq F Pr (>F)

None 0.1 -0.9 1.065 0.615 2 4.067 1.0765 0.3462168
Positive 1.8 -2.2 1.065 0.615 2 29.600 7.8353 0.0008341 *x*x
Negative 3.2 -2.4 1.065 0.615 2 45.867 12.1412 2.859e-05 **x*
Residuals 72.000 136.000
Signif. codes: 0 '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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testInteractions(fit.laov,fixed="wordtype", across="feedback",adjust="none")

F Test:
P-value adjustment method: none

feedbackl feedback2 SE1 SE2 Df Sum of Sq F Pr(>F)
LF_LE 0.1 -0.5 1.065 0.615 2 1.267 0.3353 0.7162383
HF_LE -1.3 -0.7 1.065 0.615 2 5.267 1.3941 0.2546664
HF_HE -3.0 -2.0 1.065 0.615 2 35.000 9.2647 0.0002627 ***
Residuals 72.000 136.000
Signif. codes: 0 '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Next we will begin to examine the origins of omnibus wordtype by grade interaction that was
significant. In order to interpret the sets of simples possible in this 3x2 grid of means, we
should visualize the outcome.

# first, summarize the data set to produce a new data frame that ggplot can use

myData3.wg <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("wordtype",
# look at the new data frame that contains the summary statistics

myData3.wg

#library(ggplot2)

#library(ggthemes)

# Now create the Default bar plot

p5 <- ggplot(myData3.wg, aes(x=wordtype, y=numrecall, fill=grade)) +
geom_bar (stat="identity", color="black",

position=position_dodge()) +
geom_errorbar (aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,
position=position_dodge(.9))

p6 <- p5 +labs(title="Words Recalled +/- SEM", x="WordType", y = "Mean Number Recalled")+

theme bw() +

theme (panel.grid.major.
panel.grid.major.
panel.grid.minor.
panel.grid.minor.y = element_blank(),
panel.background = element_blank(),
axis.line.y = element_line(colour="black", linewidth=.7),
axis.line.x = element line(colour="black", linewidth=.7),
plot.title = element_text(hjust=.5)
) A

= element blank(),
= element_blank(),
element blank(),

< M < ™
]
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scale_fill_manual (values=c('honeydew3', 'honeydew2', 'honeydewl'))
p6
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In the first of the testInteractions analyses in this next code chunk (#3), the set of simple
main effects of wordtype at levels of grade is produced. From the graph we may expect
wordtype to be significant in the 12th graders, but perhaps not in the 5th graders. This is
exactly what happened, as seen in the first table. In the second testInteractions output here
(#4) the effect of grade is significant only in the HF _HE condition, as the visual inspection
would have suggested.

# 3-4 effects of wordtype at levels of grade, and then grade at levels of feedback
# note these are collapsed on feedback, respectively
testInteractions(fit.laov,fixed="grade", across="wordtype",adjust="none")

F Test:
P-value adjustment method: none
wordtypel wordtype2 SE1 SE2 Df Sum of Sq F Pr(>F)
fifth 2.6 -2.73333 0.869 0.502 2 72.933 19.3059 1.937e-07 ***
twelfth 0.8 -0.93333 0.869 0.502 2 8.133 2.1529 0.1236
Residuals 72.000 136.000
Signif. codes: O '*x*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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testInteractions(fit.laov,fixed="wordtype", across="grade",adjust="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F Pr(>F)
LF_LE -0.2 0.502 1 0.3 0.1588 0.6914214
HF_LE -0.2 0.502 1 0.3 0.1588 0.6914214
HF_HE -2.0 0.502 1 30.0 15.8824 0.0001597 x*x*x*
Residuals 72.000 136
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The third omnibus 2way can also be followed up with either of its set of simple main effects.
This is presented just for the sake of completeness. A redrawn plot of feedback by grade is
not provided and the two-way interaction of feedback by grade that would have prompted this
analysis was not significant in the omnibus analysis.

# 5-6 effects of feedback at levels of grade, and then grade at levels of feedback
# note these are collapsed on wordtype
testInteractions(fit.laov,fixed="grade", across="feedback",adjust="none")

F Test:
P-value adjustment method: none
feedbackl feedback2 SE1 SE2 Df Sum of Sq F Pr (>F)
fifth -2.2 -1.66667 0.869 0.502 2 32.933 8.7176 0.0004071 *x**
twelfth -0.6 -0.46667 0.869 0.502 2 2.533 0.6706 0.5145724
Residuals 72.000 136.000
Signif. codes: O '*x*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

testInteractions(fit.laov,fixed="feedback", across="grade",adjust="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F  Pr(>F)
None 0.06667 0.502 1 0.0333 0.0176 0.894689
Positive -1.13333 0.502 1 9.6333 5.1000 0.026957 *
Negative -1.33333 0.502 1 13.3333 7.0588 0.009708 *x*
Residuals 72.000 136

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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10.4 Contrast Analyses in factorial designs using phia

Initially, we will re-create the custom contrasts for the Wordtype and Feedback factors since
they each have more than two levels. Note that these are the same contrasts employed above
in the omnibus analyses, but phia requires them to be created in a slightly different manner for
usage in the testInteraction function. The orthogonal sets employed here were arbitrarily
chosen. I am not certain why phia needs these contrasts established as lists.

# first for the feedback factor:

fbcl <- list(feedback=c(-.5, -.5, 1)) # same as defined above, except using fractions
fbc2 <- list(feedback=c(-1, 1, 0)) # same as defined above, except using fractions
fbcl

$feedback
[1] -0.5 -0.5 1.0

fbc2
$feedback
[1] -1 1 O

# now for the wordtype factor

wtypecl <- list(wordtype=c(l, -.5, -.5)) # same as defined above, except using fractions
wtypec2 <- list(wordtype=c(0, -1, 1)) # same as defined above, except using fractions
wtypecl

$wordtype
[11 1.0 -0.5 -0.5

wtypec?2

$wordtype
[11 0 -1 1

10.4.1 Simple Effect Contrasts and Simple Interaction Contrasts

We already obtained 2 and 3-way interaction contrasts above with the summary /split approach
and by using summary . 1m to obtain Type III SS equivalents. Here, we obtain simple interaction
contrasts and simple effect contrasts.

In this code, notice that testInteractions takes a “custom” argument and that is where we
can specify the contrast to be used.
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10.4.1.1 Simple 2 way interaction contrasts

First we will partition the simple two-way two way interactions into contrasts. This is shown
here largely as a template since the simple 2-way interactions and their contrasts would typi-
cally not be evaluated in this data set since the 3-way interaction was not significant by NHST
standards. An exception would be if some of the contrasts were a priori

Note that the labeling in the table is odd. The twotestInteraction functions produce the
two tables. The first examines the effect involving the first contrast on feedback (called fbcl
in the custom argument), and the second examines the second contrast on feedback (called
fbcl). Examining the first of the two tables, each row represents evaluation of a simple two
way interaction contrast of the Feedback (first contrast) and Grade at each of the three levels
of Wordtype.

The use of the colon symbol does NOT imply an interaction between those two effects as is
more typical in R ANOVA/Im notation. In addition, the labeling of the Feedback effect as
“feedbackl” doesn’t refer to the exact contrast that we called fbcl. It is just a generic label
for the fact that a contrast on feedback was specified. So in the first table, the first F value
of .0794 represents a test of fbcl by grade AT LF _LE. The second, is the same effect, but AT
HF_LE and so forth. In the second table, the first row evaluates the foc2 by grade interaction
AT LF _LE, with the F value of .0265 EVEN THOUGH the table still uses the “feedbackl”
label. The confusion can arise because the tables do not employ the fbcl and fbc2 labels that
we created. In each table, there are three tests because there are three levels of Wordtype
and the effect is either fbcl by grade (table 1) or fbc2 by grade (table 2). This pattern plays
out in subsequent implementations as well. So, while testInteractions is very powerful, the
organization of the output and its labels leaves something to be desired.

# first, an example of simple 2-way interaction contrasts of feedback with grade at levels o:
testInteractions(fit.laov, fixed="wordtype", custom=fbcl, adjustment="none", across="grade")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
LF_LE : feedbackl -0.3 1.065 1 0.15 0.0794 0.7789
HF_LE : feedbackl -0.3 1.065 1 0.15 0.0794 0.7789
HF_HE : feedbackl -1.8 1.065 1 5.40 2.8588 0.0952 .
Residuals 72.000 136
Signif. codes: O '*¥x' 0.001 '**' 0.01 'x' 0.056 '.' 0.1 ' ' 1

testInteractions(fit.laov, fixed="wordtype", custom=fbc2, adjustment="none", across="grade")
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F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(oF)
LF_LE : feedbackl -0.2 1.229 1 0.05 0.0265 0.87121
HF_LE : feedbackl -0.2 1.229 1 0.05 0.0265 0.87121
HF_HE : feedbackl -3.2 1.229 1 12.80 6.7765 0.01121 *
Residuals 72.000 136
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

When both factors in a simple 2way interaction have contrasts then the code specification
is slightly more complex. With the interaction of wordtype and feedback at levels of grade,
grade is specified as “fixed”. The “across” argument is not used. Rather, both contrasts are
specified simultaneously in the “custom” argument and ‘testInteractions understands that the
interaction of those two contrasts is to be examined.

Note that the output uses the colon symbol again, but it doesn’t mean interaction. The
interaction here is between fbcl and wtypecl (thus an interaction contrast) at fifth grade.

# simple 2-2way interaction contrast of wordtype and grade at levels of feedback
# one requested at a time here, both of the first contrasts (fbcl and wtypecl) are requested
testInteractions(fit.laov, fixed="grade", custom=c(fbcl,wtypecl), adjustment="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F Pr(>F)
fifth : feedbackl : wordtypel 1.50 0.922 1 5.00 2.6471 0.1081
twelfth : feedbackl : wordtypel 0.75 0.922 1 1.25 0.6618 0.4186
Residuals 72.000 136

Code for the other six contrasts available in this set is shown here, but results suppressed to
save space. If one were to run these additional chunks, the same “feedbackl” and “wordtypel”
labels would appear, but meaning either fbcl/fbc2 or wtypecl/wtypec2, respectively.

testInteractions(fit.laov,fixed="grade", custom=c(fbcl,wtypec2), adjustment="none")
testInteractions(fit.laov,fixed="grade", custom=c(fbc2,wtypecl), adjustment="none")
testInteractions(fit.laov,fixed="grade", custom=c(fbc2,wtypec2), adjustment="none")

Sometimes we prefer to examine simple interaction comparisons rather than simple interaction
contrasts. That kind of effect is exemplified with this type of code where a contrast is specified
for one factor (wordtype here) and the other factor is not broken into contrasts (feedback here,
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specified in the “across” argument). These will be a 2 df interaction contrasts: either wordtype
contrast 1 by feedback at levels of grade or wordtype contrast2 by feedback at levels of grade.

Once again the fifth: and twelfth: notation just specify the levels of grade AT which the simple
interaction comparisons are located.

# now simple 2-way interaction comparisons of wordtype contrasts and feedback at levels of g
# note that these effects have 2 df
testInteractions(fit.laov, fixed="grade", custom=wtypecl, adjustment="none", across="feedbac!

F Test:
P-value adjustment method: none
feedbackl feedback2 SE1 SE2 Df Sum of Sq F
fifth : wordtypel 3.0 1.6 1.844 1.065 2 9.2667 2.4529
twelfth : wordtypel 1.5 0.1 1.844 1.065 2 1.2667 0.3353
Residuals 72.000 136.000
Pr (>F)

fifth : wordtypel 0.0932 .
twelfth : wordtypel 0.7162
Residuals

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

testInteractions(fit.laov, fixed="grade", custom=wtypec2, adjustment="none", across="feedbac!

F Test:
P-value adjustment method: none
feedbackl feedback2 SE1 SE2 Df Sum of Sq F
fifth : wordtypel -3.2 -2.8 2.129 1.229 2 14.0667 3.7235
twelfth : wordtypel -0.2 0.2 2.129 1.229 2 0.0667 0.0176
Residuals 72.000 136.000
Pr (>F)

fifth : wordtypel 0.02892 *
twelfth : wordtypel 0.98251
Residuals

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

10.4.1.2 Simple and simple-simple main effect contrasts

Contrasts breaking down the simple-simple or simple main effects are also available.
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Initially, we can examine simple simple main effect contrasts of feedback at the combined levels
of wordtype and grade.

It is helpful to reexamine the plot of the data of all cell means to visualize these simple simple
main effects.

Words Recalled +/- SEM
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As we saw above, care is required in reading the table, which does not label the different
contrasts. The first table is for the fbcl contrast and the second table for the fbc2 contrast,
each at the six combined levels of Grade and Wordtype in this first illustration.

Once again, the “feedbackl” label in the tables is misleading and not necessary. We have to
discern which contrast on feedback is being tested by knowing which code line produced which
table.

# Now, how about simple SME contrasts for the feedback factor at
# combined levels of grade and wordtype

testInteractions(fit.laov, fixed=c("wordtype", "grade"), custom=fbcl, adjustment="none")
F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F  Pr(>F)
LF_LE : fifth : feedbackl -0.1 0.753 1 0.0333 0.0176 0.894689
HF_LE : fifth : feedbackl -0.8 0.763 1 2.1333 1.1294 0.291452
HF_HE : fifth : feedbackl -2.4 0.753 1 19.2000 10.1647 0.002119 *x*
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LF_LE : twelfth : feedbackl 0.2 0.753 1 0.1333 0.0706 0.791242
HF _LE : twelfth : feedbackl -0.5 0.753 1 0.8333 0.4412 0.508677
HF_HE : twelfth : feedbackl -0.6 0.753 1 1.2000 0.6353 0.428041
Residuals 72.000 136
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
testInteractions(fit.laov, fixed=c("wordtype", "grade"), custom=fbc2, adjustment="none")
F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
LF_LE : fifth : feedbackl -0.6 0.869 1 0.9 0.4765 0.4922
HF_LE : fifth : feedbackl -0.8 0.869 1 1.6 0.8471 0.3605
HF_HE : fifth : feedbackl -3.6 0.869 1 32.4 17.1529 9.265e-05 *x*x*
LF_LE : twelfth : feedbackl -0.4 0.869 1 0.4 0.2118 0.6468
HF_LE : twelfth : feedbackl -0.6 0.869 1 0.9 0.4765 0.4922
HF_HE : twelfth : feedbackl -0.4 0.869 1 0.4 0.2118 0.6468
Residuals 72.000 136
Signif. codes: O 'sxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Next, we evaluate Simple Main effect contrasts of Feedback at levels of Wordtype, collapsed
on Grade.

It would be helpful to repeat the plot of the nine means, collapsed on grade.
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These next three code chunks also produce the two contrast tests with and without a “holm”
adjustment.

The first code chunk is thus the test of feedback contrast 1 at levels of wordtype, with no p
value adjustment. Once again, the “feedbackl” label can be ignored. As an interpretation
example, consider the third F test with a value of 7.94. This effect is feedback contrast 1 in
the HF__HE group (collapsed on grade)

# or SME contrasts at levels of wordtype (collapsed on grade)
testInteractions(fit.laov, fixed=c("wordtype"), custom=fbcl, adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F  Pr(>F)
LF_LE : feedbackl 0.05 0.532 1 0.0167 0.0088 0.925423
HF_LE : feedbackl -0.65 0.532 1 2.8167 1.4912 0.226018
HF_HE : feedbackl -1.50 0.532 1  15.0000 7.9412 0.006234 **
Residuals 72.000 136

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The next chunk does the same analysis with a “holm” adjustment.
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# note that adjustment for Type I error inflation can be done. The "adjustment"
# argument uses the methods available in p.adjust
testInteractions(fit.laov, fixed=c("wordtype"), custom=fbcl, adjustment="holm")

F Test:
P-value adjustment method: holm

Value SE Df Sum of Sq F Pr(>F)
LF_LE : feedbackl 0.05 0.532 1 0.0167 0.0088 0.9254
HF_LE : feedbackl -0.65 0.532 1 2.8167 1.4912 0.4520
HF_HE : feedbackl -1.50 0.532 1  15.0000 7.9412 0.0187 *
Residuals 72.000 136

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

And the same approach is used for the second feedback contrast.

testInteractions(fit.laov, fixed=c("wordtype"), custom=fbc2, adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F  Pr(>F)
LF_LE : feedbackl -0.5 0.615 1 1.256 0.6618 0.418620
HF_LE : feedbackl -0.7 0.615 1 2.45 1.2971 0.258526
HF_HE : feedbackl -2.0 0.615 1 20.00 10.5882 0.001735 *x*
Residuals 72.000 136
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

testInteractions(fit.laov, fixed=c("wordtype"), custom=fbc2, adjustment="holm")

F Test:
P-value adjustment method: holm

Value SE Df Sum of Sq F  PrOOF)
LF_LE : feedbackl -0.5 0.615 1 1.25 0.6618 0.517053
HF_LE : feedbackl -0.7 0.615 1 2.45 1.2971 0.517063
HF_HE : feedbackl -2.0 0.615 1 20.00 10.5882 0.005204 *x*
Residuals 72.000 136
Signif. codes: O 'sx*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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There are many other simple main effect contrasts that could be exmained (following up on
the six sets of possible simple main effects described above). The important to examine in the
context of this data set would be contrasts on wordtype at levels of grade, since the omnibus
wordtype by grade interaction was significant. In order to shorten this doc, only one of those
SME contrasts is shown here, wordtype contrast2 @ fifth grade.

testInteractions(fit.laov, fixed="grade", custom=fbc2, adjustment="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F  Pr(>F)
fifth : feedbackl -1.66667 0.502 1  20.8333 11.0294 0.001411 *x*
twelfth : feedbackl -0.46667 0.502 1 1.6333 0.8647 0.355532
Residuals 72.000 136

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

10.4.2 3way interaction contrasts with phia

Next, we will examine 3-way interaction contrasts. This shows that phia can recreate what
we did above with the summary /split approach and with the summary.lm function. Those
two match because of the equal sample sizes in this example data set. If the data set were
unbalanced, the tests here, from testInteractions would match the squared t-values from
tests obtained in the summary.1lm output.

Here, two of the three factors have contrasts available and those specifications are put in the
“custom” argument. The third factor is only a 2-level factor (already a contrasts), and can
just be specified in the “across” argument.

The first of these is thus fbcl x wtypecl x grade, etc....

testInteractions(fit.laov, custom=c(fbcl,wtypecl), adjustment="none",across="grade")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel 0.75 1.304 1 0.625 0.3309 0.5669
Residuals 72.000 136

testInteractions(fit.laov, custom=c(fbcl,wtypec2), adjustment="none",across="grade")
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F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel -1.5 1.506 1 1.875 0.9926 0.3224
Residuals 72.000 136

testInteractions(fit.laov, custom=c(fbc2,wtypecl), adjustment="none",across="grade")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel 1.5 1.506 1 1.875 0.9926 0.3224
Residuals 72.000 136

testInteractions(fit.laov, custom=c(fbc2,wtypec2), adjustment="none",across="grade")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel -3 1.738 1 5.625 2.9779 0.0887 .
Residuals 72.000 136
Signif. codes: O '*¥x' 0.001 '#x' 0.01 'x' 0.056 '.' 0.1 ' ' 1

10.4.3 Two-way interaction contrasts

By leaving the “across=grade” argument out of the above code chunk, we can obtain the
two-way interaction contrasts of Feedback an Wordtype (collapsed on Grade).

testInteractions(fit.laov, custom=c(fbcl,wtypecl), adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel 1.125 0.652 1 5.625 2.9779 0.0887 .
Residuals 72.000 136
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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testInteractions(fit.laov, custom=c(fbcl,wtypec2), adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel -0.85 0.753 1 2.4083 1.275 0.2626
Residuals 72.000 136

testInteractions(fit.laov, custom=c(fbc2,wtypecl), adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel 0.85 0.753 1 2.4083 1.275 0.2626
Residuals 72.000 136

testInteractions(fit.laov, custom=c(fbc2,wtypec2), adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
feedbackl : wordtypel -1.3 0.869 1 4.225 2.2368 0.1391
Residuals 72.000 136

Finally, in this data set, the most interesting interaction effect to follow up would have been
the Wordtype By Grade interaction which was the only significant one. Simple main effects
of Wordtype at Levels of Grade (and the contrasts of those SME) were obtained above. Here,
the interaction contrasts were obtained to decompose this two way interaction.

Notice that the sum of the SS for the two effects equals the SS for the Wordtype by Grade
interaction seen in the initial ANOVA summary table, as it should for an orthogonal partition-
ing.

In this pair of analyses, only the second of the two contrasts is significant and this should not
be surprising. Most of what was varying in the wordtype by grade array of means was the

position of the HF _HE group. So, it makes sense that the second contrast which compares
HF_LE to HF _HE interacts with grade since the difference is larger in the 12th graders.

testInteractions(fit.laov, custom=wtypecl, across="grade", adjustment="none")
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F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
wordtypel 0.9 0.615 1 4.05 2.1441 0.1475
Residuals 72.000 136

testInteractions(fit.laov, custom=wtypec2, across="grade", adjustment="none")

F Test:
P-value adjustment method: none
Value SE Df Sum of Sq F Pr(oF)
wordtypel -1.8 0.71 1 12.15 6.4324 0.01338 *
Residuals 72.00 136
Signif. codes: O 'sx*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

10.4.4 A note on orthogonal contrasts

The reader should understand that use of the testInteractions function does not require
that contrasts submitted to it be orthogonal. Each contrast was submitted one at a time and
not used in calculating any other full model. The orthogonality approach taken here was simply
recognition that there are some advantages of thinking about contrast sets as orthogonal - from
the a prior point of view.

10.5 Conclusion about use of phia and testInteractions

The testInteractions function is very powerful, permitting all simple and contrast effects
to be specified (we did not examine main effect contrasts here, but they can be done as was
outlined in the 2 factor ANOVA tutorial document). I am very positive about the relative
ease of use of the arguments in testInteractions. However, the layout and labeling in the
tables produced by the function are difficult. It was only with careful comparison to other
known analyses that I was able to be certain what the testInteraction function was testing,
at times. With more regular use, the style of the table layout becomes easier to understand,
but for the novice user the labeling (e.g., :feedbackl”) can be misleading. If it were not for
this output formatting difficulty, I would be strongly recommending use of the phia functions
for this type of analysis. But emmeans may produce output that is more easily interpreted
for most users.

Finally, I am unaware of a direct wa of producing effect sizes on effects or contrasts produced
by testInteractions. However, since testInteractions does provide SS for effects, manual
computation of eta or partial eta squareds can begin with those SS values.
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11 Use of emmeans for contrasts and simple effects

The tools of the emmeans package can produce all of the same analyses as those just accom-
plished above with phia. Some types of effects are slightly easier to obtain from emmeans,
but others are more difficult (e.g., interaction contrasts). Either package provides strong tools
for these follow up analyses.

This emmeans section does not perform the detailed examination of nearly all possible con-
trasts as was done in the phia section. Instead a few examples are used in order to provide
templates and the choice of which effects to examine is partly driven by patterns in the data
set. Once again, the goal here is the provision of templates for use in other analyses, not the
“best” possible evaluation of this textbook data set.

11.1 Simple two-way interactions.

The logic and introductory wording here matches that in the phia section above:

Simple two way interactions are available (three sets). We don’t expect to be interested in any
of these since the three way interaction was not significant, but we might have had an a-priori
hypothesis about one or more of them, so illustration is included for completeness.

o wordtype by grade @ levels of feedback
o wordtype by feedback @ levels of grade
o feedback by grade @ levels of wordtype

Even if there were a significant 3=way interaction, we would probably only have been interested
in one of these three sets of simple two-ways. It would probably have been the second one
since wordtype and feedback are the two primary manipulated IVs.

Either the aov or anova_car fit objects will work with emmeans. We will use the anova_car
object here. First, extract the grid of means and other descriptive info, for all of the cells.

wgf.emm <- emmeans(fit_base.afex,~wordtype:grade:feedback)
wgf . emm

wordtype grade  feedback emmean SE df lower.CL upper.CL

LF_LE fifth None 8.4 0.615 72 7.17 9.63
HF_LE fifth None 8.8 0.615 72 7.57 10.03
HF_HE fifth None 8.0 0.615 72 6.77 9.23
LF_LE twelfth None 8.4 0.615 72 7.17 9.63
HF_LE twelfth None 8.8 0.615 72 7.57 10.03
HF_HE twelfth None 7.8 0.615 72 6.57 9.03
LF_LE fifth Positive 7.8 0.615 72 6.57 9.03
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HF_LE fifth  Positive 8.0 0.615 72 6.77 9.23
HF_HE fifth Positive 4.4 0.615 72 3.17 5.63
LF_LE twelfth Positive 8.0 0.615 72 6.77 9.23
HF_LE twelfth Positive 8.2 0.615 72 6.97 9.43
HF_HE twelfth Positive 7.4 0.615 72 6.17 8.63
LF_LE fifth Negative 8.0 0.615 72 6.77 9.23
HF_LE fifth Negative 7.6 0.615 72 6.37 8.83
HF_HE fifth Negative 3.8 0.615 72 2.57 5.03
LF_LE twelfth Negative 8.4 0.615 72 T7.17 9.63
HF_LE twelfth Negative 8.0 0.615 72 6.77 9.23
HF_HE twelfth Negative 7.0 0.615 72 5.77 8.23

Confidence level used: 0.95

In order to test the simple two way interactions, a direct and isolated approach is not possible.
Instead, we request what amounts to examination of three kinds of effects at the levels of
feedback. This code provides the simple main effects of both wordtype and grade as well
as their interaction (and here the interaction term uses the colon symbol), all AT levels of
feedback, using the ommnibus error term. Thus the simple two-way interactions that we set
out to obtain are the third effect tested in each of these three sets of tables/analyses. Note
that the second and third of them have identical F and p values - this is correct output, but
suggests that the data set may have been fabricated for use in the Keppel textbook.

# first, examine wordtypexgrade at levels of feedback
joint_tests(wgf.emm, by="feedback")

feedback = None:

model term dfl df2 F.ratio p.value
wordtype 2 72 1.076 0.3462
grade 1 72 0.018 0.8947

wordtype:grade 2 72 0.018 0.9825

feedback = Positive:

model term dfl df2 F.ratio p.value
wordtype 2 72 7.835 0.0008
grade 1 72 5.100 0.0270

wordtype:grade 2 72 3.459 0.0368

feedback = Negative:

model term dfl df2 F.ratio p.value
wordtype 2 72 12.141 <.0001
grade 1 72 7.069 0.0097
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wordtype:grade 2 72 3.459 0.0368

Now the other two sets of simple two-ways are obtained.

# second wordtypex*feedback at levels of grade
(joint_tests(wgf.emm, by="grade"))

# second gradexfeedback at levels of wordtype
joint_tests(wgf.emm, by="wordtype")

One thing that I do not like about using emmeans functions for these types of followup
analyses is that the tabled results do not provide SS and MS for the effects. It is useful to
doublecheck software for its accuracy by verifying that things work out as they should. For
example the SS for the set of grade*feedback simple two ways at levels of wordtype should
sum to the pooling of the omnibus two way of grade by feedback and the three way of grade
by feedback by wordtype. We could work backwards from the F values (using the MSerror
from above) to find these values, but that added work is not completed here. Initial code to
show how to manually find a SS from the F value is here:

# e.g. for grade by feedback at HF_HE

# the F value was 4.818

# df for this simple two way is 2

# MSerror of 1.889 from the omnibus analyses above
df _effect <- 2

MSeffect <- 1.889%4.818

SSeffect <- MSeffect*xdf effect

SSeffect

[1] 18.2024

Doing this with the other two would provide the value that when summed should equal the
pooled SS described above.

11.2 Simple Simple main effects
Since the 3way interaction was not significant, the analyst would probably not go on to examine

simple simple main effects. Nonetheless one set is outlined here for the sake of demonstrating
the emmeans capability.
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Working from the full grid of means from all cells (the wgf.emm grid), we can specify the
oneway type of question that simple simple main effects ask. The variable to be examined is
wordtype - at the different levels of feedback and grade combined.

A repetition of the cell means graph here can help visualization of where the question is asked.
With this plot it is reinforced that the 2df effect of wordtype can be examined in six places
(the combinations of feedback and grade)
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The briefest way to request the simple simple main effects is to use the joint_test function
on the 3way grid of means. Note that the focal variable is not directly named in an argument.
Rather, it is implied because the wgf.emm object contains means from combinations of all three
IVs. When the feedback and grade variables are set as the variables AT which the questions
are to be asked (by “by”). that leaves only wordtype as the IV of the effect.

Not surprisingly, the only places that wordtype is a significant effect is in the negative and
positive fifth grade conditions.

joint_tests(wgf.emm, by=c("feedback","grade"))

feedback = None, grade = fifth:
model term dfl df2 F.ratio p.value
wordtype 2 72 0.424 0.6564

feedback = Positive, grade = fifth:
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model term dfl df2 F.ratio p.value
wordtype 2 72 10.835 0.0001

feedback = Negative, grade = fifth:
model term dfl df2 F.ratio p.value
wordtype 2 72 14.224 <.0001

feedback = None, grade = twelfth:
model term dfl df2 F.ratio p.value
wordtype 2 72 0.671 0.5146

feedback = Positive, grade = twelfth:
model term dfl df2 F.ratio p.value
wordtype 2 72 0.459 0.6339

feedback = Negative, grade = twelfth:

model term dfl df2 F.ratio p.value
wordtype 2 72 1.376 0.2590

11.3 Simple Main Effects.

In this particular data set the 3way interaction was not significant and the only two way
interaction that was significant was the wordtype by grade effect. The graph of these col-
lapsed /marginal means is redrawn here to provide a reference point.
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Now extract descriptive stats into an emmeans grid.

w.g.emm <- emmeans(fit_base.afex, "wordtype", by="grade")

[:]twemh

NOTE: Results may be misleading due to involvement in interactions

W.g.emm

grade = fifth:
wordtype emmean

LF_LE 8.07
HF_LE 8.13
HF_HE 5.40

grade = twelfth:
wordtype emmean

LF_LE 8.27
HF_LE 8.33
HF_HE 7.40

o

o

SE df lower.CL upper.

.355
.355
.355

SE
.355
.355
.355

72
72
72

df
72
72
72

7.36 8.
7.43 8.
4.69 6.

lower.CL upper.
7.56 8.
7.63 9.
6.69 8.

44
84
11

CL
97
04
11

Results are averaged over the levels of: feedback
Confidence level used: 0.95
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Now perform the tests of wordtype at levels of grade:

test(contrast(w.g.emm), joint=TRUE, adjust=none)

grade dfl df2 F.ratio p.value note
fifth 2 72 19.306 <.0001 d
twelfth 2 72 2.153 0.1236 d

d: dfl reduced due to linear dependence

It is not clear what the warning about df and linear dependence is referring to here. Each of
these simple main effects has the 2 numerator df expected for a comparison involving three
means. | suspect that I may have used the “joint” argument in a way that is unexpected by
the contrast function, even though it has produced correct results.

11.4 Contrasts with emmeans
There are five places where contrasts will be demonstrated here. These are on the 3-way and
one 2-way interaction, on the set of simple simple main effects examined above, the simple

main effects, and the main effects. We will not do all possible ones but be guided (partly) by
the outcome of the omnibus tests.

It is easier to begin with the lower order effects.

11.4.1 Main Effect contrasts and pairwise main effect comparisons

In this data set, feedback did not interact with other factors, so we could examine contrasts
on that main effect.

f.emm <- emmeans(fit_base.afex, "feedback")

NOTE: Results may be misleading due to involvement in interactions

f.emm

feedback emmean SE df lower.CL upper.CL

None 8.37 0.251 72 7.87 8.87
Positive 7.30 0.251 72 6.80 7.80
Negative 7.13 0.251 72 6.63 7.63
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Results are averaged over the levels of: wordtype, grade
Confidence level used: 0.95

The orthogonal contrast set requested here for this factor is different than the one employed
earlier in this document. Here, the Helmert set is specified since the levels are a control
(first level) and two treatment conditions. The change was also made just to remind the user
that a priori choices should drive contrast choice. In examining the means from the grid just
produced, the expectation would be that the first of these two contrasts would account for the
bulk of the feedback main effect variation, and it does. This change is also why the tests of
these two contrasts do not match what was produced with the summary.1lm analysis on the
omnibus model above.

lincombs_f <- contrast(f.emm,
list(acl=c(2, -1, -1),
ac2=c(0, 1,-1)))
test(lincombs_f, adjust="none")

contrast estimate SE df t.ratio p.value
acl 2.300 0.615 72 3.742 0.0004
ac2 0.167 0.3556 72 0.470 0.6400

Results are averaged over the levels of: wordtype, grade

It is worth noting at this point that there is not a direct way of obtaining effect sizes with these
types of emmeans analyses. In addition, since the output simply does a t-test, it is not possible
to use a presented table of SS to calculate eta or partial eta squareds manually. This is a
downside of using emmeans (or phia). I have seen ways of obtaining effect sizes for pairwise
comparisons using emmeans, but not for contrasts - still searching. The testInteractions
function from phia does provide SS for contrast effects as seen above, so manual computation
of effect sizes can be accomplished with those quantities.

It is also worth remembering that the emmeans approach can also produce adjusted p values.
The main effect contrast test is repeated here with a request for bonferroni-sidak correction of
the p values (others are possible.

test(lincombs_f, adjust="sidak")

contrast estimate SE df t.ratio p.value
acl 2.300 0.615 72 3.742 0.0007
ac2 0.167 0.3556 72 0.470 0.8704

Results are averaged over the levels of: wordtype, grade
P value adjustment: sidak method for 2 tests
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Pairwise comparisons can also be performed, with Tukey-adjusted p values. Note that since
the error df is specified as 72, the pooled within-cell error term is used, appropriately if there

is homogeneity of variance.

pairs(f.emm, adjust="tukey")

contrast estimate SE df
None - Positive 1.067 0.355 72
None - Negative 1.233 0.355 72
Positive - Negative 0.167 0.355 72

Results are averaged over the levels of: wordtype, grade

t.ratio p.value
3.006 0.0101
3.476 0.0025
0.470 0.8857

P value adjustment: tukey method for comparing a family of 3 estimates

11.4.2 Simple Main Effect Contrasts

This section focuses on simple main effect following up on the wordtype by grade interaction
since that was the only two-way interaction that was significant. It can be visualized again

with this graph.
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The contrast set on the wordtype variable is also the helmert set. Based on the visual patterns
of the means we might expect that both contrasts on wordtype would be significant in fifth
graders and neither in 12th graders. This is precisely what the outcome is.
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lincombs_w <- contrast(w.g.emm,
list(acl=c(2, -1, -1),
ac2=c(0, 1,-1)))

test(lincombs_w, adjust="none")

grade = fifth:

contrast estimate SE df t.ratio p.value
acl 2.600 0.869 72 2.991 0.0038
ac2 2.733 0.502 72 5.447 <.0001

grade = twelfth:

contrast estimate SE df t.ratio p.value
acl 0.800 0.869 72 0.920 0.3605
ac2 0.933 0.502 72 1.860 0.0670

Results are averaged over the levels of: feedback

11.4.3 Simple Simple Main effect contrasts

Since we examined the Simple Simple main effect of wordtype at combined levels of feedback
and grade above, we will now decompose those effects into their simple simple main effect
contrasts. It is worth seeing the graph of the cell means again in order to visualize where those
simple simple main effects and their contrasts originate.
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The contrast set will match what was used for wordtype earlier in the document, the Helmert
set.

w.gf.emm <- emmeans(fit_base.afex, "wordtype", by=c("grade","feedback"))
w.gf.emm

grade = fifth, feedback = None:
wordtype emmean SE df lower.CL upper.CL

LF_LE 8.4 0.615 72 7.17 9.63
HF_LE 8.8 0.615 72 7.57 10.03
HF_HE 8.0 0.615 72 6.77 9.23

grade = twelfth, feedback = None:
wordtype emmean SE df lower.CL upper.CL

LF_LE 8.4 0.615 72 7.17 9.63
HF_LE 8.8 0.615 72 7.57 10.03
HF_HE 7.8 0.615 72 6.57 9.03

grade = fifth, feedback = Positive:
wordtype emmean SE df lower.CL upper.CL

LF_LE 7.8 0.615 72 6.57 9.03
HF_LE 8.0 0.615 72 6.77 9.23
HF_HE 4.4 0.615 72 3.17 5.63
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grade
wordt
LF_LE
HF_LE
HF_HE

grade
wordt
LF_LE
HF_LE
HF_HE

grade
wordt
LF_LE
HF_LE
HF_HE

Confid

lincom

test (1

grade
contr
acl
ac2

grade
contr
acl
ac2

grade
contr
acl
ac2

grade

= twelfth, feedback = Positive:

ype emmean SE df lower.CL upper.
8.0 0.615 72 6.77 9.
8.2 0.615 72 6.97 9.
7.4 0.615 72 6.17 8.

= fifth, feedback = Negative:

ype emmean SE df lower.CL upper.
8.0 0.615 72 6.77 9.
7.6 0.615 72 6.37 8.
3.8 0.615 72 2.57 5.

= twelfth, feedback = Negative:

ype emmean SE df lower.CL upper.
8.4 0.615 72 7.17 9.
8.0 0.615 72 6.77 9.
7.0 0.615 72 5.77 8.

ence level used: 0.95

bs_w.gf <- contrast(w.gf.emm,
list(acl=c(2, -1,

23
43
63

23
83
03

63
23
23

_1> s

ac2=c(0, 1,-1)))

incombs_w.gf, adjust="none")

= fifth, feedback = None:

ast estimate SE df t.ratio p.value
0.0 1.510 72 0.000 1.0000
0.8 0.869 72 0.920 0.3605

= twelfth, feedback = None:

ast estimate SE df t.ratio p.value
0.2 1.510 72 0.133 0.8947
1.0 0.869 72 1.150 0.2538

= fifth, feedback = Positive:

ast estimate SE df t.ratio p.value
3.2 1.5610 72 2.125 0.0370
3.6 0.869 72 4.142 0.0001

= twelfth, feedback = Positive:
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contrast estimate SE df t.ratio p.value
acl 0.4 1.510 72 0.266 0.7912
ac2 0.8 0.869 72 0.920 0.3605

grade = fifth, feedback = Negative:

contrast estimate SE df t.ratio p.value
acl 4.6 1.510 72 3.055 0.0032
ac2 3.8 0.869 72 4.372 <.0001

grade = twelfth, feedback = Negative:

contrast estimate SE df t.ratio p.value
acl 1.8 1.510 72 1.196 0.2358
ac2 1.0 0.869 72 1.150 0.2538

11.4.4 Two way interaction contrasts

Once again the emphasis is on the wordtype by grade interaction since that was the only
omnibus 2way interaction that was significant.

First we set up the 3x2 grid that dimensions wordtype and grade, collapsed on feedback.

wg.emm <- emmeans(fit_base.afex, c("wordtype",'"grade"))

NOTE: Results may be misleading due to involvement in interactions

Wg.emm

wordtype grade  emmean SE df lower.CL upper.CL

LF_LE fifth 8.07 0.355 72 7.36 8.77
HF_LE fifth 8.13 0.355 72 7.43 8.84
HF_HE fifth 5.40 0.355 72 4.69 6.11
LF_LE twelfth  8.27 0.355 72 7.56 8.97
HF_LE twelfth 8.33 0.355 72 7.63 9.04
HF_HE twelfth 7.40 0.355 72 6.69 8.11

Results are averaged over the levels of: feedback
Confidence level used: 0.95
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Using emmeans for interaction contrasts is a bit more complex. It requires passing a whole
contrast vector rather than just the main effect contrasts - in other words, emmeans cannot
combine single IV contrasts to obtain the coefficients for an interaction contrast. We have to
do it first. And, the order has to match the order of the cells in the grid.

One approach is to take the contrast of interest for wordtype (this initial example is with the
first of the two contrasts of interest in the Helmert set) and using matrix operations multiply
it by the single contrast for grade. This produces a list that has to be “unlisted” to create a
string of six coefficients in order for the six cells of the 3x2.

These operations produce icl and ic2 which are the strings of coefficients for the two interaction
contrasts for the wordtype by grade 2way interaction.

# first, make sure that the wordtype coefficients are helmert
# follows from changing to that specification in a section above
contrasts (bg.3way$wordtype)

[,1]1 [,2]
LFLE 2 0
HF LE -1 -1
HF HE -1 1
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wc <- contrasts(bg.3way$wordtype)
we

[,11 [,2]
LFLE 2 0
HF LE -1 -1
HF_ HE -1 1

# now make sure the contrast for grade is 1, -1
contrasts(bg.3way$grade) <- contr.sum
gc <- contrasts(bg.3way$grade)

gc

[,1]
fifth 1
twelfth -1

# now create the 6 coefficient interaction contrast vectors
# (two of them)

icl <= wcl[,11%=*%t(gc)

icl <- matrix(unlist(icl), nrow=1)

ic2 <= wel,2]%*%t(gc)

ic2 <- matrix(unlist(ic2), nrow=1)

icl

(,11 [,21 [,3]1 [,4] [,5] [,6]
[1,] 2 -1 -1 -2 1 1

ic2

(,11 [,2]1 [,3] [,4] [,8] [,6]
[1,] o -1 1 0 1 -1

Now that the contrast vectors are known, they can be passed to the test function.

If we look at the graph, we can see that the HF _LE group differs from HF _HE in fifth graders
more than it does in 12th graders. This is exactly what the second interaction contrast tests
and it is significant by traditional NHST criteria.
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lincombs.intwg <- contrast(wg.emm,
list(intcl=c(2,-1,-1,-2,1,1),
intc2=c(0,1,-1,0,-1,1))
)

test(lincombs.intwg, adjust="none")

contrast estimate SE df t.ratio p.value
intcl 1.8 1.23 72 1.464 0.1475
intc2 1.8 0.71 72 2.536 0.0134

Results are averaged over the levels of: feedback

11.4.5 Simple two way interaction contrasts

The wordtype by feedback interaction at levels of grade is a good illustration for simple two-way
interaction contrasts because of the way that the base graph was set up.
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wf.g.emm <- emmeans(fit_base.afex,~wordtype:feedback, by='"grade")
wf.g.emm

grade = fifth:
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For this analysis we change the contrasts to better fit the pattern seen in the graph - this is
blatantly post hoc, but we can “see” the possibility of a 2way interaction in grade 5 but not
grade 12 data. And most of that is the way that the third wordtype level (HF HE) differs from
the other two and how that, in turn, depends on whether one is examining feedback condition
1 (none) vs. 2 and 3 (positive and negative). This sets up one primary interaction contrast
that will be pursued as a template for how to do any/all simple interaction contrasts.

A guiding principle in construction of these contrasts is that the interaction contrast vector
has to match the pattern of the order of the 9 cells in the grid of means shown just above.

# change to reverse helmert
reverse <- matrix(c(-1,-1,2,1,-1,0),ncol=2)
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contrasts(bg.3way$wordtype) <- reverse
wc <- contrasts(bg.3way$wordtype)
we

[,1]1 [,2]
LF_LE -1 1
HF LE -1 -1
HF HE 2 0

# set feedback contrasts to helmert
helmert <- matrix(c(2,-1,-1,0,1,-1),ncol=2)
contrasts(bg.3way$feedback) <- helmert

fb <- contrasts(bg.3way$feedback)

fb

[,11 [,2]
None 2 0
Positive -1 1

Negative -1 -1

# now create the set of 9-coefficient # interaction contrast vectors
# (four of them)

wclbyfbl <- wcl,11%*%t(fb[,1])

wclbyfbl <- matrix(unlist(wclbyfbl), nrow=1)

wclbyfb2 <- wcl,1]1%*%t(fb[,2])

wclbyfb2 <- matrix(unlist(wclbyfb2), nrow=1)

wec2byfbl <- wcl,2]%*%t(£b[,2])

wc2byfbl <- matrix(unlist(wc2byfbl), nrow=1)

wc2byfb2 <- wcl,2]%*%t(fb[,2])

wc2byfb2 <- matrix(unlist(wc2byfb2), nrow=1)

For demonstration, we will focus only on the first of the four interaction contrasts - since that
is the post hoc impression referred to above.

wclbyfbl

(,11 [,21 [,3]1 [,4]1 [,8]1 .61 .71 [,8] [,9]
(1, -2 -2 4 1 1 -2 1 1 -2
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Wordtype cl by Feedback c¢1 Coefficients

wordtype__columns

feedback rows LF LE HF LE HF HE
none -2 1 1
positive -2 1 1
negative 4 -2 -2

Again, note that the order of the coefficients is important - it matches the cell order from the
grid of means shown above. A block diagram/table can help here.

In R, there should be a way to pass those nine coefficients in the wclbyfbl vector to the
emmeans: : contrast function but there is a gap in my R understanding so I've just typed
them in manually.

The analysis shows what was expected. The simple interaction of the first contrast of wordtype
and the first contrast of feedback produced a significant outcome in fifth graders but not in
12th grades, as the graph implies, visually. It is worth recalling here that even though the
pattern appears to differ in 5th and 12th graders, the three way interaction was not significant.
We can’t simple use the presence and absence of significance in simple effects to imply the
presence of a higher order effect - it needs to be tested. On the other hand, if these simple
interaction contrasts were a priori hypotheses, then there is a rationale for examining them
without the presence of an omnibus 3way interaction.

lincombs.intwf.g <- contrast(wf.g.emn,
list(intcontri=
c(-2,-2,4,1,1,-2,1,1,-2)
))

test(lincombs.intwf.g, adjust="none")

grade = fifth:
contrast estimate SE df t.ratio p.value
intcontri 12.6 3.69 72 3.417 0.0010

grade = twelfth:

contrast estimate SE df t.ratio p.value
intcontri 0.6 3.69 72 0.163 0.8712

11.4.6 Three way interaction contrasts

The simplest way of obtaining the 3-way interaction contrasts is to return to the use of
summary.lm on the basic aov fit object as outlined in section 5.1.1 above. emmeans can
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also produce the three-way interaction contrasts, but with much labor. (see later section)

For the data set under analysis here, the 3-way interaction was NS, so we would probably
not undertake to evaluate these interaction contrasts unless there were a priori reasons to do
so. However, they are shown here anyway (next section) in order to provide a template for
situations where their evaluation would be important.

11.4.6.1 Using summary.lm

Here is the repetition of how it was done in the sections on 2-way interaction contrasts and
simple 2-way interaction contrasts above (with emmeans). First, change the contrast set to
the desired ones. The sets for wordtype and feedback are the same ones used in the previous
emmans sections where the two way interaction contrasts and the simple two way interaction of
wordtype and feedback were partitioned into contrasts. Note that these are different contrast
sets than those used in the earlier section so the results will not match. I changed them just
to provide another and different opportunity to match what the analysis says to what the eye
sees on the plot.

contrasts.wordtype <- matrix(c(-1,-1,2,1,-1,0),ncol=2)
contrasts(bg.3way$wordtype) <- contrasts.wordtype
contrasts(bg.3way$wordtype)

[,11 [,2]
LF_ LE -1 1
HF LE -1 -1
HFHE 2 0

contrasts.feedback <- matrix(c(2,-1,-1,0,1,-1),ncol=2)
contrasts(bg.3way$feedback) <- contrasts.feedback
contrasts(bg.3way$feedback)

[,11 [,2]
None 2 0
Positive -1 1

Negative -1 -1
The grade factor only has two levels so in a sense, it is already a contrast, and recall that we

changed it earlier to a 1, -1 vector.

Here, we refit the basic aov model, using the factors with these redefined orthogonal contrast
sets just to refresh memory and have it on hand in this section. (Same results as appeared
earlier when the aov fit was produced “fit.1laov”)
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fit.2aov <- aov(numrecall~wordtypexfeedback*grade,data=bg.3way)
car::Anova(fit.2aov, type=3)

Anova Table (Type III tests)

Response: numrecall
Sum Sq Df F value Pr (>F)

(Intercept) 5198.4 1 2752.0941 < 2.2e-16 *x**
wordtype 64.9 2 17.1706 7.993e-07 **x*
feedback 26.9 2 7.1118 0.001519 **

grade 14.4 1 7.6235 0.007304 x*x*
wordtype:feedback 14.7 4 1.9412 0.112829
wordtype:grade 16.2 2 4.2882 0.017397 *
feedback:grade 8.6 2 2.2765 0.109987
wordtype:feedback:grade 10.0 4 1.3235 0.269461
Residuals 136.0 72

Signif. codes: O '#%x' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Recall that if we use summary.1m tests of the regression coefficients are provided and these are
the main effect, two way interaction and 3 way interaction contrast vectors - accomplished with
t-tests. They are type 3 SS calculations, so these interaction contrasts suit our purposes.

There are four interaction contrasts. We might label them:

1. Wel by FBcel by grade
2. We2 by FBcl by grade
3. Wcl by FBc2 by grade
4. We2 by FBc2 by grade

And they are in that order in the output.

Notice that only the first is significant. In fact the t values for the 2nd, 3rd, and fourth are all
zero. This means that all of the 3way interaction is associated with that first contrast. This
never happens, so we can assume that the data set is a fabricated textbook data set.

Nonetheless, this provides tests of the 3 way interaction contrasts. Unfortunately, it does not
provide SS, only test statistics.

summary.lm(fit.2aov)
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Call:

aov(formula = numrecall ~ wordtype * feedback * grade, data = bg.3way)
Residuals:
Min 1Q Median 3Q Max
-2.2 -1.0 0.1 1.0 2.2

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.600e+00 1.449e-01 52.460 < 2e-16 **x
wordtypel -6.000e-01 1.024e-01 -5.857 1.3e-07 *x*xx
wordtype?2 -3.333e-02 1.774e-01 -0.188 0.851509
feedbackl 3.833e-01 1.024e-01  3.742 0.000364 ***
feedback? 8.333e-02 1.774e-01  0.470 0.640011
gradel -4.000e-01 1.449e-01 -2.761 0.007304 x*x*
wordtypel:feedbackl 1.833e-01 7.244e-02 2.531 0.013560 =*
wordtype2:feedbackl -8.333e-02 1.255e-01 -0.664 0.508677
wordtypel:feedback2 8.333e-02 1.255e-01 0.664 0.508677
wordtype2:feedback2 -1.500e-01 2.173e-01 -0.690 0.492245
wordtypel:gradel -3.000e-01 1.024e-01 -2.929 0.004557 *x
wordtype2:gradel -6.975e-16 1.774e-01  0.000 1.000000
feedbackl:gradel 2.167e-01 1.024e-01 2.115 0.037885 =*
feedback2:gradel 5.000e-02 1.774e-01  0.282 0.778905
wordtypel:feedbackl:gradel 1.667e-01 7.244e-02 2.301 0.024296 =*
wordtype2:feedbackl:gradel -8.311e-16 1.2556e-01  0.000 1.000000
wordtypel:feedback2:gradel -2.027e-17 1.256e-01  0.000 1.000000
wordtype2:feedback2:gradel 9.435e-17 2.173e-01 0.000 1.000000
Signif. codes: O '**xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.374 on 72 degrees of freedom
Multiple R-squared: 0.5336, Adjusted R-squared: 0.4235

F-statistic: 4.846 on 17 and 72 DF, p-value: 9.884e-07

By using summary.1m, R has combined the main effect coding vectors in the appropriate ways
to create the full rank X matrix that contains all 2 and 3 way interaction contrasts as well
as main effect contrasts. This just comes out at part of the omnibus analysis with the split
argument or here with summary.lm.
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11.4.7 Using emmeans for 3 way interaction contrasts.

emmeans is a very inefficient way of obtaining higher order interaction contrasts. We cannot
simply provide coefficient sets for each IV separately and have emmeans combine them. We
have to create the vectors “manually”, perhaps using matrix algebra tools. The logic is that
emmeans can only evaluate a contrast if the coefficients are provided. (my approach was to
create the “lincombs” objects). In other words, emmeans will not do the combinatorial work
to produce interaction from knowledge of main effect vectors. We have to “manually” create
those vectors.

We have established the contrasts for each IV above (the “main effect” coding vectors). They
are.....

first, for wordtype:

wc <- contrasts(bg.3way$wordtype)
wC

[,1]1 [,2]
LF LE -1 1
HF_ LE -1 -1
HF HE 2 0

then for feedback:

fb <- contrasts(bg.3way$feedback)

fb

[,11 [,2]
None 2 0
Positive -1 1

Negative -1 -1

and then for grade:

gc <- contrasts(bg.3way$grade)
gc

[,1]
fifth 1
twelfth -1
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There are four interaction contrasts formed with the 3way product of the three sets of compo-
nent vectors. We can create them using the same matrix logic that we used above.

This is tricky because we have to make certain that the order of the coefficients matches what
will be in the grid of the emmeans output.

First I show the vector for the 2way combination of Wcl and fbl, then the three way with
grade.

wclbyfbl <- wcl,11%*%t(£fb[,1])
wclbyfbl <- matrix(unlist(wclbyfbl), nrow=1)
wclbyfbl

(,11 [,21 [,3] [,4] [,8] [,6] [,7] [,8] [,9]
[1,] -2 -2 4 1 1 -2 1 1 -2

wclbyfblbyge <- t(wclbyfbl)%*Jt (gc)
wclbyfblbygc

fifth twelfth

[1,] -2 2
[2,] -2 2
[3,] 4 -4
(4,] 1 -1
(5,] 1 -1
(6,] -2 2
[7,] 1 -1
(8,] 1 -1
[9,] -2 2

The emmeans grid is produced here in a way that keeps the order of cells parallel to the order
that the coefficient set describes.

wfg.emm <- emmeans(fit_base.afex,~wordtype:feedback:grade)
wig.emm

wordtype feedback grade emmean SE df lower.CL upper.CL

LF_LE None fifth 8.4 0.615 72 T7.17 9.63
HF_LE None fifth 8.8 0.615 72 7.57 10.03
HF_HE None fifth 8.0 0.615 72 6.77 9.23
LF_LE Positive fifth 7.8 0.615 72 6.57 9.03
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HF_LE Positive fifth 8.0 0.615 72 6.77 9.23
HF _HE Positive fifth 4.4 0.615 72 3.17 5.63
LF_LE Negative fifth 8.0 0.615 72 6.77 9.23
HF_LE Negative fifth 7.6 0.615 72 6.37 8.83
HF_HE Negative fifth 3.8 0.615 72 2.57 5.03
LF_LE None twelfth 8.4 0.615 72 7.17 9.63
HF_LE None twelfth 8.8 0.615 72 7.57 10.03
HF_HE None twelfth 7.8 0.615 72 6.57 9.03
LF_LE Positive twelfth 8.0 0.615 72 6.77 9.23
HF_LE Positive twelfth 8.2 0.615 72 6.97 9.43
HF_HE Positive twelfth 7.4 0.615 72 6.17 8.63
LF_LE Negative twelfth 8.4 0.615 72 7.17 9.63
HF_LE Negative twelfth 8.0 0.615 72 6.77 9.23
HF_HE Negative twelfth 7.0 0.615 72 5.77 8.23

Confidence level used: 0.95

Now we can pass those 18 coefficients to the contrast function, in the proper order and use
test, as before, to evaluate that three way interaction contrast. Notice that the t value for
this first of four 3way interaction contrasts matches what was produced by summary.1lm

lincombs.3wayint <- contrast(wfg.emm,
list(intcontrl.3way=
c(-2,-2,4,1,1,-2,1,1,-2,2,2,-4,-1,-1,2,-1,-1,2)
))

test(lincombs.3wayint, adjust="none")

contrast estimate SE df t.ratio p.value
intcontrl.3way 12 5.22 72 2.301 0.0243

The other three 3way interaction contrasts could be tested in the same manner. That is not
done here since the 3way was not significant and the purpose of demonstration was accom-
plished with the first of the four.

11.4.7.1 Conclusions on 3 way interaction contrasts.

Obtaining the test of the 3way interaction contrasts with emmeans is considerable work. This
illustration only outlined the way to obtain one of the four possible ones. This inefficiency is
not desirable. It is simpler to use summary.lm. Neither approach produces SS and F tests or
effect sizes. I will continue to prefer SPSS MANOVA.
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11.5 Alpha rate adjustments wtih contrasts.

Recall that each use of the emmeans: : test function had the capability of p value adjustments
using the bonferroni/sidak/holm/fdr family of adjustments. Any of the sets of contrasts tested
above might have used that argument, especially if the orthogonal sets were not a priori. The
exception would be in the final contrast, the simple 2way interaction contrast where only one
contrast was tested - thus nothing to be adjusted. However, if the full orthogonal set of four
interaction contrasts were employed, then the adjustment might have made sense.

11.6 Pairwise follow up comparisons with emmeans

If a preference for follow up analyses chooses pairwise comparisons rather than contrasts, then
emmeans permits that approach.

Consider the set of simple main effects of wordtype at levels of grade that was examined above.
The grid of means is reproduced here as a reminder.

w.g.emm <- emmeans(fit_base.afex, "wordtype'", by="grade")

NOTE: Results may be misleading due to involvement in interactions

W.g.emm

grade = fifth:
wordtype emmean SE df lower.CL upper.CL

LF_LE 8.07 0.355 72 7.36 8.77
HF_LE 8.13 0.355 72 7.43 8.84
HF_HE 5.40 0.355 72 4.69 6.11

grade = twelfth:
wordtype emmean SE df lower.CL upper.CL

LF_LE 8.27 0.355 72 7.56 8.97
HF_LE 8.33 0.355 72 7.63 9.04
HF_HE 7.40 0.355 72 6.69 8.11

Results are averaged over the levels of: feedback
Confidence level used: 0.95

The plot of those marginal means in the wordtype by grade layout is also reproduced here for
visual reference.
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If we wanted to examine pairwise difference among the levels of wordtype, separately at levels
of grade we could use the pairs function. In its default format, this produces all three pairwise
t-tests separately at each level of grade (six tests in all) where all use the pooled within cell
error term and its 72 df rather than the error specific to the two cells involved.

Unsurprisingly the HF_HE group differs from the other two levels of wordtype in fifth graders
but no differences were found in 12th graders.

pairs(w.g.emm, adjust="none")

grade = fifth:

contrast estimate SE df t.ratio p.value
LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.8947
LF_LE - HF_HE 2.6667 0.502 72 5.314 <.0001
HF_LE - HF_HE 2.7333 0.502 72 5.447 <.0001

grade = twelfth:

contrast estimate SE df t.ratio p.value
LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.8947
LF_LE - HF_HE 0.8667 0.502 72 1.727 0.0885
HF_LE - HF_HE 0.9333 0.502 72 1.860 0.0670

Results are averaged over the levels of: feedback
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If these were explicitly post hoc pairwise comparisons, then it would be appropriate to do p
value adjustments for error rate inflation. One nice thing about the pairs.emmGrid function
is its capability for a tukey adjustment method in addition to the bonferroni/sidak/fdr family.
Note that the adjustment is done within families of pairwise comparisons - here that means
adjusting for three tests at each level of grade separately, not for a total of six tests.

pairs(w.g.emm, adjust="tukey")

grade = fifth:

contrast estimate SE df t.ratio p.value
LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.9903
LF_LE - HF_HE 2.6667 0.502 72 5.314 <.0001
HF_LE - HF_HE 2.7333 0.502 72 5.447 <.0001

grade = twelfth:

contrast estimate SE df t.ratio p.value
LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.9903
LF_LE - HF_HE 0.8667 0.502 72 1.727 0.2022
HF_LE - HF_HE 0.9333 0.502 72 1.860 0.1579

Results are averaged over the levels of: feedback
P value adjustment: tukey method for comparing a family of 3 estimates

There is a way to produce effect size statistics (Cohen’s d) for these pairwise comparisons. See
the help documentation for the eff_size function in emmeans.

12 Additional Post Hoc Tests

Tukey’s HSD is easily accomplished on an AOV fit via a function in the base stats package that
is loaded upon startup note that this compares all pairs of cell means. It would severely over
correct for alpha inflation since not all of the pairs of cell means are interesting comparisons
(comparing applies and oranges in many instances). I cannot recommend using this method
for a factorial.

The only satisfactory solutions that I've seen for application of Post Hoc tests variously to
marginal tables of means collapsed from the full factorial table or for arrays of means in simple
effect configurations are those provided in the emmeans suite of tools. We saw the availability
of the adjust argument in both the contrasts approach and the pairwise comparison approach.
Analogous methods may be found in the phia approach.
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13 Reproducibility

Ver 1.3 March 31, 2025

e Converted document to Quarto
¢ Cleaned up some language and added needed exposition
e Corrected a few typos

Ver 1.2 April 17, 2023

e major revision of much language and sequencing of approach

¢ added major sections on follow up analyses with the emmeans and phia packages
Ver 1.1 March 31, 2021
o edited graph styles

Ver 1.0 Sep 9, 2020

sessionInfo()

R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Matrix products: default

locale:

[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:

[1] grid stats graphics grDevices utils datasets methods
[8] base
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other attached packages:

[1]
[4]
[7]
[10]
[13]
[16]
[19]
[22]
[25]

gridExtra_2.3
tibble_3.2.1
Rmisc_1.5.1
plyr_1.8.9
Imtest_0.9-40
gt_0.11.1
ggplot2_3.5.1
car_3.1-3
afex_1.4-1

emmeans_1.10.6
carData_3.0-5
lme4 _1.1-36

loaded via a namespace (and not attached):

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[562]
[65]
[58]
[61]
[64]
[671]
[70]
[73]
[76]
[79]
[82]
[85]
[88]
[91]

RColorBrewer_1.1-3
jsonlite_1.8.9
TH.data_1.1-2
pwr_1.3-0
vctrs_0.6.5
base64enc_0.1-3
plotrix_3.8-4
HH_3.1-52
iterators_1.0.14
pkgconfig 2.0.3
rbibutils_2.3

numDeriv_2016.8-1.1

Hmisc_5.2-2
compiler_4.4.2
withr_3.0.2
performance_0.13.0
gegpp_0.5.8-1
foreign_0.8-88
nnet_7.3-20
nlme_3.1-166
cluster_2.1.8
gtable_0.3.6
data.table_1.16.4
pillar_1.10.1

robustbase_0.99-4-1

gghalves_0.1.4
deldir_2.0-4
reformulas_0.4.0
DEoptimR_1.1-3-1
yaml_2.3.10
codetools_0.2-20

ved_1.4-13
datawizard_1.0.0
estimability_1.5.1
nloptr_2.1.1
Cairo_1.6-2
htmltools_0.5.8.1
Formula_1.2-5
htmlwidgets_1.6.4
mime_0.12
R6_2.5.1
shiny_1.10.0
colorspace_2.1-1
labeling_0.4.3
proxy_0.4-27
htmlTable_2.4.3
MASS_7.3-64
caTools_1.18.3
httpuv_1.6.15
glue_1.8.0
promises_1.3.2
reshape2_1.4.4
shinyBS_0.61.1
xml2_1.3.6
stringr_1.5.1
splines_4.4.2
survival_3.8-3
SparseM_1.84-2
xfun_0.50
stringi_1.8.4
boot_1.3-31
interp_1.1-6
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qqplotr_0.0.6 el071_1.7-16
sjstats_0.19.0 sciplot_1.2-0
lattice_0.22-6 psych_2.4.12
phia_0.3-1 nortest_1.0-4
zoo_1.8-12 knitr_1.49
ggrain_0.0.4 ggthemes_5.1.0

effectsize_1.0.0
bcdstats_0.0.0.9009
Matrix_1.7-1

rstudioapi_0.17.1
magrittr_2.0.3
farver_2.1.2
rmarkdown_2.29
minqa_1.2.8
polynom_1.4-1
pracma_2.4.4
sandwich_3.1-1
lifecycle_1.0.4
fastmap_1.2.0
digest_0.6.37
miscTools_0.6-28
abind_1.4-8
doParallel _1.0.17
backports_1.5.0
quantreg_5.99.1
tools_4.4.2
qqconf_1.3.2
dabestr_2023.9.12
checkmate_2.3.2
generics_0.1.3
class_7.3-23
foreach_1.5.2
later_1.4.1
dplyr_1.1.4
gmp_0.7-5
tidyselect_1.2.1
yacca_1.4-2
yhat_2.0-4
evaluate_1.0.3
twosamples_2.0.1



[94]

[97]
[100]
[103]
[106]
[109]
[112]
[115]
[118]

cli_3.6.3
xtable_1.8-4
munsell 0.5.1
png_0.1-8
MatrixModels_0.5-3
jpeg_0.1-10
Rmpfr_1.0-0
scales_1.3.0
rlang 1.1.4

rpart_4.1.24
parameters_0.24.1
Rcpp_1.0.14
parallel_4.4.2
bayestestR_0.15.0
bitops_1.0-9
mvtnorm_1.3-3
insight_1.0.1
mnormt_2.1.1
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pbmcapply_1.5.1
Rdpack_2.6.2
coda_0.19-4.1

leaps_3.2
latticeExtra_0.6-30
opdisDownsampling_1.0.1
ImerTest_3.1-3
purrr_1.0.2
multcomp_1.4-26
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