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1 3 way factorial design. A completely randomized, “between
subjects” factorial design

The challenge of analyzing a 3 way factorial design is not in the specification and analysis of the omnibus
model (aov, lm, afex,granova‘), it is in the follow up analyses.

With the use of the phia and emmeans packages we can obtain Simple 2-way interactions, Simple Simple
Main Effects, Simple Main Effects, and orthogonally partitioned contrasts (and non-orthogonal ones) on
all sources of variance, e.g., 3-, and 2-way interaction contrasts, main effect contrasts, simple main effect
contrasts.

We still need:

1. easier ways to compute effect sizes, especially for contrasts

2. bayesian and robust methods

In order to use this tutorial effectively, the reader should be alert to terminology specific to the style of ANOVA
analysis that is traditional in the textbooks such as Kirk, Winer, Keppel, and Maxwell/Delaney/Kelley. The
relevant terminology/notation includes:

An AxBxC design: Three independent variables, perhaps called A, B, and C. Fully “between groups” design
where participants/cases are measured only once on the outcome variable under the combined conditions of
factors A, B, and C.

Levels: The groups defined by each variable are called levels. E.g., in the primary example used in this
document the “Grade” factor (factor C) has two “levels”: fifth grade and twelfth grade.

Factorial: The design is called a factorial since each level of each factor is found in all possible combinations
with all levels of all other factors. So, for example a 3x3x2 factorial design (AxBxC) has 18 total combinations
or “cells”

Cell means vs Marginal Means, Omnibus Effects: Cells are defined by the three way combination of factors.
The 3x3x2 design used in this document has 18 cells. But we can imaging “collapsing” on one or more IVs to
produce marginal sets of means. For example collapsing on factor C produces an AxB matrix of means (9
means) and that would lead to assessment of the omnibus AxB interaction term. The omnibus terms in a 3
way factorial are the three main effects, the three two way interactions and the three way interaction.
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Simple Effects When effects of one or more factors are examined at only specific levels of one or more other
factor, then those effects are “simple” These can include:

Simple Main effects: effects of one IV at levels of another factor, but collapsed on the third. E.g., A at B1
or C at A3. These are 1-way questions about the effect of a single IV but the location of the questions is
specified by a level of a second variable.

Simple Simple Main effects: The same 1way idea can be extended to effects of one factor at combined levels
of two other factors. For example - B at A3,C2

Simple interactions: It is possible to ask a two way interaction question (e.g., AxB), not in an omnibus sense,
but at a level of a third IV. For example - AxB at C2

An important part of the grasp of the logic is the understanding of these following concepts:

1. A three way interaction is a test of whether simple 2 way interactions differ across levels of a 3rd
variable, e.g., AxB at C1 is not the same as AxB at C2

2. A simple 2 way interaction is a test of whether simple simple main effects differ.
3. An omnibus 2 way interaction tests whether simple main effects differ.
4. A 3 way interaction contrast tests whether simple 2way interaction contrasts differ across levels of a

third factor.
5. 2 way interaction contrasts test whether simple main effect contrasts differ.

In addition, many sections of this tutorial rely on the idea of creating orthogonal sets of contrasts. This
philosophy derives from the alignment of that approach with theory-drive a priori hypotheses and from the
recognized value of full rank models in ANovA work.

2 First, load packages that are used by this document

library(psych,quietly=TRUE, warn.conflicts=FALSE)
library(afex,quietly=TRUE, warn.conflicts=FALSE)
library(car,quietly=TRUE, warn.conflicts=FALSE)
library(phia,quietly=TRUE, warn.conflicts=FALSE)
library(nortest,quietly=TRUE, warn.conflicts=FALSE)
library(lmtest,quietly=TRUE, warn.conflicts=FALSE)
library(sciplot,quietly=TRUE, warn.conflicts=FALSE)
library(ggplot2,quietly=TRUE, warn.conflicts=FALSE)
library(ggthemes,quietly=TRUE, warn.conflicts=FALSE)
library(plyr,quietly=TRUE, warn.conflicts=FALSE)
library(Rmisc,quietly=TRUE, warn.conflicts=FALSE)
library(knitr,quietly=TRUE, warn.conflicts=FALSE)
library(gt,quietly=TRUE, warn.conflicts=FALSE)
library(emmeans,quietly=TRUE, warn.conflicts=FALSE)
library(tibble,quietly=TRUE, warn.conflicts=FALSE)

2.1 Read the data from a .csv file
The data are from Keppel and Wickens, pg 466 data set, a 3x3x2 design it is the “keppel_3way_pg466.csv”
file. The dependent variable is number of words recalled from a memorized list. Three independent variables
were involved and factorially arranged. Participants were either fifth or twelfth graders. They were assigned
to one of three Feedback conditions: control (none), praise, or negative. The words were one of three types:
“LF_LE”, “HF_LE”, or “HF_HE”. The factorial arrangement of these three factors thus produced a total of
eighteen cells in the design.
bg.3way <- read.csv("keppel_3way_pg466.csv",header=T, stringsAsFactors=TRUE)
# examine the contents of a few lines and the structure of the data frame
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head(bg.3way)

## snum feedback wordtype grade numrecall
## 1 1 none LF_LE fifth 7
## 2 2 none LF_LE fifth 7
## 3 3 none LF_LE fifth 9
## 4 4 none LF_LE fifth 10
## 5 5 none LF_LE fifth 9
## 6 6 none HF_LE fifth 7
str(bg.3way)

## ’data.frame’: 90 obs. of 5 variables:
## $ snum : int 1 2 3 4 5 6 7 8 9 10 ...
## $ feedback : Factor w/ 3 levels "neg","none","pos": 2 2 2 2 2 2 2 2 2 2 ...
## $ wordtype : Factor w/ 3 levels "HF_HE","HF_LE",..: 3 3 3 3 3 2 2 2 2 2 ...
## $ grade : Factor w/ 2 levels "fifth","twelfth": 1 1 1 1 1 1 1 1 1 1 ...
## $ numrecall: int 7 7 9 10 9 7 8 9 10 10 ...

2.2 Rework some data defninition characteristics
Some housekeeping with data definition helps format output.
# change values of feedback variable to whole words to facilitate
# better graph reading
# recode function in car is useful
# library(car)
bg.3way$feedback <- car::recode(bg.3way$feedback, "'none'='None'; 'pos'='Positive'; 'neg'='Negative'")

# define the order of factor labels so that they don't just
# get reported and graphed in alphabetical order
bg.3way$feedback <- factor(bg.3way$feedback,

levels=c("None","Positive","Negative"))
bg.3way$wordtype <- factor(bg.3way$wordtype,

levels=c("LF_LE","HF_LE","HF_HE"))

# convert the snum variable to a factor for better
# compatibility with afex functions
bg.3way$snum <- as.factor(bg.3way$snum)

In order to make writing code easier for the graphing functions, the data frame is attached here. Prior to the
ANOVA work it will be detached.
attach(bg.3way)

# look at contents of the final data frame
psych::headTail(bg.3way,9)

## snum feedback wordtype grade numrecall
## 1 1 None LF_LE fifth 7
## 2 2 None LF_LE fifth 7
## 3 3 None LF_LE fifth 9
## 4 4 None LF_LE fifth 10
## 5 5 None LF_LE fifth 9
## 6 6 None HF_LE fifth 7
## 7 7 None HF_LE fifth 8
## 8 8 None HF_LE fifth 9
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## 9 9 None HF_LE fifth 10
## ... <NA> <NA> <NA> <NA> ...
## 87 87 Negative HF_HE twelfth 5
## 88 88 Negative HF_HE twelfth 7
## 89 89 Negative HF_HE twelfth 8
## 90 90 Negative HF_HE twelfth 9

2.3 Exploratory Data Analysis
Numeric and graphical summaries are obtained here.

2.3.1 Numerical summaries of the dependent variable, by group.

First, use the psych package to look at descriptives.
# library(psych)
describeBy(numrecall, list(feedback,grade),mat=T,type=2, data=bg.3way)

## item group1 group2 vars n mean sd median trimmed mad min
## X11 1 None fifth 1 15 8.400000 1.298351 9 8.384615 1.4826 7
## X12 2 Positive fifth 1 15 6.733333 2.086236 7 6.846154 2.9652 3
## X13 3 Negative fifth 1 15 6.466667 2.325838 7 6.538462 2.9652 2
## X14 4 None twelfth 1 15 8.333333 1.290994 8 8.307692 1.4826 6
## X15 5 Positive twelfth 1 15 7.866667 1.457330 8 7.846154 1.4826 6
## X16 6 Negative twelfth 1 15 7.800000 1.424279 8 7.846154 1.4826 5
## max range skew kurtosis se
## X11 10 3 0.02711293 -1.8430822 0.3352327
## X12 9 6 -0.57155174 -0.7482937 0.5386638
## X13 10 8 -0.42284874 -0.6004418 0.6005289
## X14 11 5 0.19577718 0.1252747 0.3333333
## X15 10 4 -0.05515056 -1.3885181 0.3762809
## X16 10 5 -0.45184512 -0.6318191 0.3677473

2.4 Draw a few graphs to examine the cell means.
Graphical exploration of several types

2.4.1 First, a clustered box plot

Use the standard boxplot function from base R. Notice how the labels are not always fully visible. It is
possible to use other functions to angle the labels so they can be seen - not worked out here.
# win.graph()
boxplot(numrecall~feedback*wordtype*grade, data=bg.3way,col=c("gray75","gray85","gray95"),

main="3-way Factorial Design Example",
xlab="Treatment Group",
ylab="NumRecall")
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A different approach to clustered boxplots can be implemented with ggplot2.
# first, summarize the data set to produce a new data frame that ggplot can use
myData <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback", "wordtype", "grade"))
# look at the new data frame that contains the summary statistics
myData

## feedback wordtype grade N numrecall sd se ci
## 1 None LF_LE fifth 5 8.4 1.341641 0.6000000 1.665867
## 2 None LF_LE twelfth 5 8.4 1.140175 0.5099020 1.415715
## 3 None HF_LE fifth 5 8.8 1.303840 0.5830952 1.618932
## 4 None HF_LE twelfth 5 8.8 1.483240 0.6633250 1.841685
## 5 None HF_HE fifth 5 8.0 1.414214 0.6324555 1.755978
## 6 None HF_HE twelfth 5 7.8 1.303840 0.5830952 1.618932
## 7 Positive LF_LE fifth 5 7.8 1.303840 0.5830952 1.618932
## 8 Positive LF_LE twelfth 5 8.0 1.581139 0.7071068 1.963243
## 9 Positive HF_LE fifth 5 8.0 1.224745 0.5477226 1.520722
## 10 Positive HF_LE twelfth 5 8.2 1.643168 0.7348469 2.040262
## 11 Positive HF_HE fifth 5 4.4 1.341641 0.6000000 1.665867
## 12 Positive HF_HE twelfth 5 7.4 1.341641 0.6000000 1.665867
## 13 Negative LF_LE fifth 5 8.0 1.414214 0.6324555 1.755978
## 14 Negative LF_LE twelfth 5 8.4 1.341641 0.6000000 1.665867
## 15 Negative HF_LE fifth 5 7.6 1.341641 0.6000000 1.665867
## 16 Negative HF_LE twelfth 5 8.0 1.224745 0.5477226 1.520722
## 17 Negative HF_HE fifth 5 3.8 1.303840 0.5830952 1.618932
## 18 Negative HF_HE twelfth 5 7.0 1.581139 0.7071068 1.963243
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p <- ggplot(data=bg.3way, aes(x=feedback, y=numrecall, fill=wordtype)) +
geom_boxplot() +
scale_fill_manual(values = c("grey45", "grey65", "grey75")) +

facet_wrap(~grade,ncol=1)
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2.4.2 Bar graphs +/- std error bars

Several approaches to the standard bar graph are available. First, use the bargraph.CI function from the
sciplot package. The key to producing side by side panels is to use the screen function.
# Now, bar graphs +/- std error bars
# library(sciplot)
# win.graph()
split.screen(figs=c(1,2))

## [1] 1 2
#win.graph()
screen(1)
bargraph.CI(wordtype,numrecall,group=feedback,lc=TRUE, uc=TRUE,legend=T,

cex.leg=1,bty="n",col=c("gray65","gray80","gray95"),ylim=c(0.01,12),
ylab="NumRecall",main="Fifth Grade",xlab="WordType Condition",
data=subset(bg.3way,grade == "fifth"))

box()
axis(4,labels=F)

7



screen(2)
#win.graph()
bargraph.CI(wordtype,numrecall,group=feedback,lc=TRUE, uc=TRUE,legend=T,

cex.leg=1,bty="n",col=c("gray65","gray80","gray95"),ylim=c(0.01,12),
ylab="NumRecall",main="Twelfth Grade",xlab="WordType Condition",
data=subset(bg.3way,grade == "twelfth"))

box()
axis(4,labels=F)
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close.screen(all = TRUE)
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2.4.3 Bar Graphs with ggplot2

With ggplot2 we have to produce an object that summarizes the data frame firts - extracting means and std
errors. I did this with an Rmisc function.
# first, summarize the data set to produce a new data frame that ggplot can use
myData <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback", "wordtype", "grade"))
# look at the new data frame that contains the summary statistics
myData

## feedback wordtype grade N numrecall sd se ci
## 1 None LF_LE fifth 5 8.4 1.341641 0.6000000 1.665867
## 2 None LF_LE twelfth 5 8.4 1.140175 0.5099020 1.415715
## 3 None HF_LE fifth 5 8.8 1.303840 0.5830952 1.618932
## 4 None HF_LE twelfth 5 8.8 1.483240 0.6633250 1.841685
## 5 None HF_HE fifth 5 8.0 1.414214 0.6324555 1.755978
## 6 None HF_HE twelfth 5 7.8 1.303840 0.5830952 1.618932
## 7 Positive LF_LE fifth 5 7.8 1.303840 0.5830952 1.618932
## 8 Positive LF_LE twelfth 5 8.0 1.581139 0.7071068 1.963243
## 9 Positive HF_LE fifth 5 8.0 1.224745 0.5477226 1.520722
## 10 Positive HF_LE twelfth 5 8.2 1.643168 0.7348469 2.040262
## 11 Positive HF_HE fifth 5 4.4 1.341641 0.6000000 1.665867
## 12 Positive HF_HE twelfth 5 7.4 1.341641 0.6000000 1.665867
## 13 Negative LF_LE fifth 5 8.0 1.414214 0.6324555 1.755978
## 14 Negative LF_LE twelfth 5 8.4 1.341641 0.6000000 1.665867
## 15 Negative HF_LE fifth 5 7.6 1.341641 0.6000000 1.665867
## 16 Negative HF_LE twelfth 5 8.0 1.224745 0.5477226 1.520722
## 17 Negative HF_HE fifth 5 3.8 1.303840 0.5830952 1.618932
## 18 Negative HF_HE twelfth 5 7.0 1.581139 0.7071068 1.963243

Now, use the myData object to draw the base plot (p1), and then add style control elements.
#library(ggplot2)
#library(ggthemes)
# Now create the Default bar plot
p1 <- ggplot(myData, aes(x=feedback, y=numrecall, fill=wordtype)) +

geom_bar(stat="identity", color="black",
position=position_dodge()) +

geom_errorbar(aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,
position=position_dodge(.9)) +

facet_wrap(~grade,ncol=1)

p2 <- p1 +labs(title="Words Recalled +/- SEM", x="Feedback Group", y = "Mean Number Recalled")+
theme_bw() +
theme(panel.grid.major.x = element_blank(),

panel.grid.major.y = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.background = element_blank(),
axis.line.y = element_line(colour="black", size=.7),
axis.line.x = element_line(colour="black", size=.7),
plot.title = element_text(hjust=.5)
) +

scale_fill_manual(values=c('honeydew3','honeydew2', 'honeydew1'))

## Warning: The ‘size‘ argument of ‘element_line()‘ is deprecated as of ggplot2 3.4.0.
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## i Please use the ‘linewidth‘ argument instead.
print(p2)
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3 Perform the basic/omnibus 3 way ANOVA
First, detach the attached data frame since aov permits specification of the data frame name.
detach(bg.3way)

3.1 Use the aov function for the base omnibus analysis
Fitting the core model with aov follows a similar logic to that used for 2-way designs. The model formula
could have been written the following way:
# code not run
fit_base.aov <- aov(numrecall~feedback + wordtype + grade +

feedback:wordtype +
feedback:grade +
wordtype:grade +
feedback:wordtype:grade,
data=bg.3way)

The model syntax shown above, naming each effect in the model, is inefficient when we want a full factorial
analysis. It is more efficient to use the asterisk operator which tells aov to create all higher order terms from
the main effects listed.
fit_base.aov <- aov(numrecall~feedback*wordtype*grade,data=bg.3way)

3.1.1 a different way to obtain tables of means and std errors

This is an efficient function, but care must be taken in unbalanced designs to be certain of whether it produces
weighted or unweighted marginal means. In our example this doesn’t matter since sample sizes are balanced.
model.tables(fit_base.aov,"means",se=T)

## Tables of means
## Grand mean
##
## 7.6
##
## feedback
## feedback
## None Positive Negative
## 8.367 7.300 7.133
##
## wordtype
## wordtype
## LF_LE HF_LE HF_HE
## 8.167 8.233 6.400
##
## grade
## grade
## fifth twelfth
## 7.2 8.0
##
## feedback:wordtype
## wordtype
## feedback LF_LE HF_LE HF_HE
## None 8.4 8.8 7.9
## Positive 7.9 8.1 5.9
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## Negative 8.2 7.8 5.4
##
## feedback:grade
## grade
## feedback fifth twelfth
## None 8.400 8.333
## Positive 6.733 7.867
## Negative 6.467 7.800
##
## wordtype:grade
## grade
## wordtype fifth twelfth
## LF_LE 8.067 8.267
## HF_LE 8.133 8.333
## HF_HE 5.400 7.400
##
## feedback:wordtype:grade
## , , grade = fifth
##
## wordtype
## feedback LF_LE HF_LE HF_HE
## None 8.4 8.8 8.0
## Positive 7.8 8.0 4.4
## Negative 8.0 7.6 3.8
##
## , , grade = twelfth
##
## wordtype
## feedback LF_LE HF_LE HF_HE
## None 8.4 8.8 7.8
## Positive 8.0 8.2 7.4
## Negative 8.4 8.0 7.0
##
##
## Standard errors for differences of means
## feedback wordtype grade feedback:wordtype feedback:grade
## 0.3549 0.3549 0.2897 0.6146 0.5018
## replic. 30 30 45 10 15
## wordtype:grade feedback:wordtype:grade
## 0.5018 0.8692
## replic. 15 5

3.1.2 Obtain ANOVA summary tables

The summary and anova functions produce the same summary table (Type I SS).
summary(fit_base.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.87 13.43 7.112 0.00152 **
## wordtype 2 64.87 32.43 17.171 7.99e-07 ***
## grade 1 14.40 14.40 7.624 0.00730 **
## feedback:wordtype 4 14.67 3.67 1.941 0.11283
## feedback:grade 2 8.60 4.30 2.276 0.10999
## wordtype:grade 2 16.20 8.10 4.288 0.01740 *
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## feedback:wordtype:grade 4 10.00 2.50 1.324 0.26946
## Residuals 72 136.00 1.89
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
anova(fit_base.aov)

## Analysis of Variance Table
##
## Response: numrecall
## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.867 13.433 7.1118 0.001519 **
## wordtype 2 64.867 32.433 17.1706 7.993e-07 ***
## grade 1 14.400 14.400 7.6235 0.007304 **
## feedback:wordtype 4 14.667 3.667 1.9412 0.112829
## feedback:grade 2 8.600 4.300 2.2765 0.109987
## wordtype:grade 2 16.200 8.100 4.2882 0.017397 *
## feedback:wordtype:grade 4 10.000 2.500 1.3235 0.269461
## Residuals 72 136.000 1.889
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

3.1.3 Refit the model using lm

It is worth recalling that since aov is a wrapper for lm, we can we refit the model, using the lm function.
This produces the same anova summary table as when we used aov above, so the residuals are the same.
This approach will become useful when we examine analysis of contrasts, in unequal N designs.
# do the 3 way anova with the lm function
fit.1lm <- lm(numrecall~feedback*wordtype*grade,data=bg.3way)
#summary(fit.1lm)
anova(fit.1lm)

## Analysis of Variance Table
##
## Response: numrecall
## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.867 13.433 7.1118 0.001519 **
## wordtype 2 64.867 32.433 17.1706 7.993e-07 ***
## grade 1 14.400 14.400 7.6235 0.007304 **
## feedback:wordtype 4 14.667 3.667 1.9412 0.112829
## feedback:grade 2 8.600 4.300 2.2765 0.109987
## wordtype:grade 2 16.200 8.100 4.2882 0.017397 *
## feedback:wordtype:grade 4 10.000 2.500 1.3235 0.269461
## Residuals 72 136.000 1.889
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

3.2 Use the afex package for the omnibus ANOVA
An alternative the provides some advantages is the suite of ANOVA tools from afex.
fit_base.afex <- aov_car(numrecall~feedback*wordtype*grade + Error(1|snum), data=bg.3way)
gt::gt(nice(fit_base.afex))

Effect df MSE F ges p.value
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feedback 2, 72 1.89 7.11 ** .165 .002
wordtype 2, 72 1.89 17.17 *** .323 <.001
grade 1, 72 1.89 7.62 ** .096 .007
feedback:wordtype 4, 72 1.89 1.94 .097 .113
feedback:grade 2, 72 1.89 2.28 .059 .110
wordtype:grade 2, 72 1.89 4.29 * .106 .017
feedback:wordtype:grade 4, 72 1.89 1.32 .068 .269

4 Evaluate Assumptions
The normality and homoscedasticity/homogeneity assumptions are evaluated in the standard manner we
covered for linear models and ANOVA objects.

4.1 First, produce the diagnostic plots for linear models
The standard two plots for evaluating homoscedasticity and normality of the residuals are available in the
same manner as for other linear model objects that we have seen previously.
plot(fit_base.aov,which=1)

4 5 6 7 8 9

−
2

−
1

0
1

2

Fitted values

R
es

id
ua

ls

aov(numrecall ~ feedback * wordtype * grade)

Residuals vs Fitted

55

66

13

14



plot(fit_base.aov,which=2)
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The qqPlot function from the car package produces a nice normal QQ plot.
car::qqPlot(fit_base.aov$residuals)
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## [1] 55 66

There is clearly some non-normality in the distribution of these residuals so let’s examine a frequency
histogram with a kernel denisity overlaid.
hist(fit_base.aov$residuals, breaks=10, prob=TRUE)
lines(density(fit_base.aov$residuals))
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Histogram of fit_base.aov$residuals
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4.2 Inferential tests of the Normality and Homogeneity of Variance assumptions
We can see some non-normality of the residuals from the graphical displays, so inferential tests might be in
order. The Anderson-Darling test rejects the null hypothesis that residuals are normally distributed.
nortest::ad.test(residuals(fit_base.aov))

##
## Anderson-Darling normality test
##
## data: residuals(fit_base.aov)
## A = 1.5133, p-value = 0.0006257

A Shapiro-Wilk test reaches the same conclusion.
shapiro.test(residuals(fit_base.aov))

##
## Shapiro-Wilk normality test
##
## data: residuals(fit_base.aov)
## W = 0.94663, p-value = 0.001042

The Levene test for homogeneity of variance is obtained using the function from the car package. Very little
variation in cell variances/stdevs was seen and this test was not significant.
car::leveneTest(fit_base.aov)

## Levene’s Test for Homogeneity of Variance (center = median)
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## Df F value Pr(>F)
## group 17 0.0897 1
## 72

The Breusch Pagan test of homoscedasticity leads to a similar outcome, as does the non-constant variance
test.
lmtest::bptest(fit_base.aov)

##
## studentized Breusch-Pagan test
##
## data: fit_base.aov
## BP = 4.1174, df = 17, p-value = 0.9994
car::ncvTest(fit.1lm)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.008655078, Df = 1, p = 0.92588

5 Orthogonal Contrasts on the Omnibus Effects
We will obtain partitioning of omnibus effects into their single df contrasts and later use the emmeans and
phia package both for these omnibus effects and to obtain simple effects.

5.1 Work with the split argument and the summary.lm function to obtain
contrasts on omnibus effects.

The Feedback and Wordtype factors both have three levels and are now decomposed into a pair of orthogonal
contrasts each. For Feedback, the first contrast compares the negative condition to the average of the other
two and the second contrasts compares none and positive.
contrasts.feedback <- matrix(c(-1,-1,2,-1,1,0),ncol=2)
contrasts(bg.3way$feedback) <- contrasts.feedback
contrasts(bg.3way$feedback)

## [,1] [,2]
## None -1 -1
## Positive -1 1
## Negative 2 0

For the Wordtype variable, the first contrast compares LF_LE to the other two, and the second compares
HF-LE to HF_HE.
contrasts.wordtype <- matrix(c(2,-1,-1,0,-1,1),ncol=2)
contrasts(bg.3way$wordtype) <- contrasts.wordtype
contrasts(bg.3way$wordtype)

## [,1] [,2]
## LF_LE 2 0
## HF_LE -1 -1
## HF_HE -1 1

I will redo the basic omnibus ANOVA here and the use the split function to obtain tests of contrasts.
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fit.1aov <- aov(numrecall~feedback*wordtype*grade,data=bg.3way)
#summary(fit.1aov)
anova(fit.1aov)

## Analysis of Variance Table
##
## Response: numrecall
## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.867 13.433 7.1118 0.001519 **
## wordtype 2 64.867 32.433 17.1706 7.993e-07 ***
## grade 1 14.400 14.400 7.6235 0.007304 **
## feedback:wordtype 4 14.667 3.667 1.9412 0.112829
## feedback:grade 2 8.600 4.300 2.2765 0.109987
## wordtype:grade 2 16.200 8.100 4.2882 0.017397 *
## feedback:wordtype:grade 4 10.000 2.500 1.3235 0.269461
## Residuals 72 136.000 1.889
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The initial application of this approach includes partitioning of both the Feedback and Wordtype factors.
Grade is only two levels, so requires no further decomposition. Notice that summary now produces all eleven
single df contrasts among the twelve cells, breaking down main effects and interactions involving Feedback
and Wordtype.
summary(fit.1aov, split=list(feedback=list(feedback.ac1=1, feedback.ac2=2),

wordtype=list(wordtype.ac1=1, wordtype.ac2=2)))

## Df Sum Sq Mean Sq F value
## feedback 2 26.87 13.43 7.112
## feedback: feedback.ac1 1 9.80 9.80 5.188
## feedback: feedback.ac2 1 17.07 17.07 9.035
## wordtype 2 64.87 32.43 17.171
## wordtype: wordtype.ac1 1 14.45 14.45 7.650
## wordtype: wordtype.ac2 1 50.42 50.42 26.691
## grade 1 14.40 14.40 7.624
## feedback:wordtype 4 14.67 3.67 1.941
## feedback:wordtype: feedback.ac1.wordtype.ac1 1 5.63 5.63 2.978
## feedback:wordtype: feedback.ac2.wordtype.ac1 1 2.41 2.41 1.275
## feedback:wordtype: feedback.ac1.wordtype.ac2 1 2.41 2.41 1.275
## feedback:wordtype: feedback.ac2.wordtype.ac2 1 4.23 4.23 2.237
## feedback:grade 2 8.60 4.30 2.276
## feedback:grade: feedback.ac1 1 3.20 3.20 1.694
## feedback:grade: feedback.ac2 1 5.40 5.40 2.859
## wordtype:grade 2 16.20 8.10 4.288
## wordtype:grade: wordtype.ac1 1 4.05 4.05 2.144
## wordtype:grade: wordtype.ac2 1 12.15 12.15 6.432
## feedback:wordtype:grade 4 10.00 2.50 1.324
## feedback:wordtype:grade: feedback.ac1.wordtype.ac1 1 0.63 0.63 0.331
## feedback:wordtype:grade: feedback.ac2.wordtype.ac1 1 1.88 1.88 0.993
## feedback:wordtype:grade: feedback.ac1.wordtype.ac2 1 1.88 1.88 0.993
## feedback:wordtype:grade: feedback.ac2.wordtype.ac2 1 5.62 5.62 2.978
## Residuals 72 136.00 1.89
## Pr(>F)
## feedback 0.00152 **
## feedback: feedback.ac1 0.02571 *
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## feedback: feedback.ac2 0.00364 **
## wordtype 7.99e-07 ***
## wordtype: wordtype.ac1 0.00721 **
## wordtype: wordtype.ac2 2.05e-06 ***
## grade 0.00730 **
## feedback:wordtype 0.11283
## feedback:wordtype: feedback.ac1.wordtype.ac1 0.08870 .
## feedback:wordtype: feedback.ac2.wordtype.ac1 0.26258
## feedback:wordtype: feedback.ac1.wordtype.ac2 0.26258
## feedback:wordtype: feedback.ac2.wordtype.ac2 0.13913
## feedback:grade 0.10999
## feedback:grade: feedback.ac1 0.19721
## feedback:grade: feedback.ac2 0.09520 .
## wordtype:grade 0.01740 *
## wordtype:grade: wordtype.ac1 0.14747
## wordtype:grade: wordtype.ac2 0.01338 *
## feedback:wordtype:grade 0.26946
## feedback:wordtype:grade: feedback.ac1.wordtype.ac1 0.56693
## feedback:wordtype:grade: feedback.ac2.wordtype.ac1 0.32243
## feedback:wordtype:grade: feedback.ac1.wordtype.ac2 0.32243
## feedback:wordtype:grade: feedback.ac2.wordtype.ac2 0.08870 .
## Residuals
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

If we only pass one variable at a time to the split function, the resulting ANOVA table yields interaction
comparisons instead of interaction contrasts.
summary(fit.1aov, split=list(feedback=list(feedback.ac1=1, feedback.ac2=2)))

## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.87 13.43 7.112 0.00152 **
## feedback: feedback.ac1 1 9.80 9.80 5.188 0.02571 *
## feedback: feedback.ac2 1 17.07 17.07 9.035 0.00364 **
## wordtype 2 64.87 32.43 17.171 7.99e-07 ***
## grade 1 14.40 14.40 7.624 0.00730 **
## feedback:wordtype 4 14.67 3.67 1.941 0.11283
## feedback:wordtype: feedback.ac1 2 8.03 4.02 2.126 0.12669
## feedback:wordtype: feedback.ac2 2 6.63 3.32 1.756 0.18007
## feedback:grade 2 8.60 4.30 2.276 0.10999
## feedback:grade: feedback.ac1 1 3.20 3.20 1.694 0.19721
## feedback:grade: feedback.ac2 1 5.40 5.40 2.859 0.09520 .
## wordtype:grade 2 16.20 8.10 4.288 0.01740 *
## feedback:wordtype:grade 4 10.00 2.50 1.324 0.26946
## feedback:wordtype:grade: feedback.ac1 2 2.50 1.25 0.662 0.51905
## feedback:wordtype:grade: feedback.ac2 2 7.50 3.75 1.985 0.14479
## Residuals 72 136.00 1.89
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Similarly, with only Wordtype partitioned. . . . . . .
summary(fit.1aov, split=list(wordtype=list(wordtype.ac1=1, wordtype.ac2=2)))

## Df Sum Sq Mean Sq F value Pr(>F)
## feedback 2 26.87 13.43 7.112 0.00152 **

20



## wordtype 2 64.87 32.43 17.171 7.99e-07 ***
## wordtype: wordtype.ac1 1 14.45 14.45 7.650 0.00721 **
## wordtype: wordtype.ac2 1 50.42 50.42 26.691 2.05e-06 ***
## grade 1 14.40 14.40 7.624 0.00730 **
## feedback:wordtype 4 14.67 3.67 1.941 0.11283
## feedback:wordtype: wordtype.ac1 2 8.03 4.02 2.126 0.12669
## feedback:wordtype: wordtype.ac2 2 6.63 3.32 1.756 0.18007
## feedback:grade 2 8.60 4.30 2.276 0.10999
## wordtype:grade 2 16.20 8.10 4.288 0.01740 *
## wordtype:grade: wordtype.ac1 1 4.05 4.05 2.144 0.14747
## wordtype:grade: wordtype.ac2 1 12.15 12.15 6.432 0.01338 *
## feedback:wordtype:grade 4 10.00 2.50 1.324 0.26946
## feedback:wordtype:grade: wordtype.ac1 2 2.50 1.25 0.662 0.51905
## feedback:wordtype:grade: wordtype.ac2 2 7.50 3.75 1.985 0.14479
## Residuals 72 136.00 1.89
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

5.1.1 A WORD OF CAUTION

Please recall from work in the 2-way design and the oneway tutorial that use of this split function, while
fairly simple, produces Type I SS decompositions when sample sizes are unequal. This may not be desirable,
so other approaches are necessary. One is shown here, others are outlined below using the emmeans or phia
packages.

When we apply the summary.lm function to an aov object, the resultant table is a table of the regression
coefficients for the model. The t-tests here are tantamount to tests of Type III SS and may be more desirable
when sample sizes are unequal. In our example, the squares of these t values equal the F tests from the
summary tables above where split was use. But that was ONLY because sample sizes were equal in this
example.
summary.lm(fit.1aov)

##
## Call:
## aov(formula = numrecall ~ feedback * wordtype * grade, data = bg.3way)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2 -1.0 0.1 1.0 2.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.20000 0.20488 35.143 < 2e-16 ***
## feedback1 -0.36667 0.14487 -2.531 0.01356 *
## feedback2 -0.83333 0.25092 -3.321 0.00141 **
## wordtype1 0.43333 0.14487 2.991 0.00380 **
## wordtype2 -1.36667 0.25092 -5.447 6.79e-07 ***
## gradetwelfth 0.80000 0.28974 2.761 0.00730 **
## feedback1:wordtype1 0.16667 0.10244 1.627 0.10811
## feedback2:wordtype1 0.26667 0.17743 1.503 0.13723
## feedback1:wordtype2 -0.26667 0.17743 -1.503 0.13723
## feedback2:wordtype2 -0.70000 0.30732 -2.278 0.02571 *
## feedback1:gradetwelfth 0.26667 0.20488 1.302 0.19721
## feedback2:gradetwelfth 0.60000 0.35486 1.691 0.09520 .
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## wordtype1:gradetwelfth -0.30000 0.20488 -1.464 0.14747
## wordtype2:gradetwelfth 0.90000 0.35486 2.536 0.01338 *
## feedback1:wordtype1:gradetwelfth -0.08333 0.14487 -0.575 0.56693
## feedback2:wordtype1:gradetwelfth -0.25000 0.25092 -0.996 0.32243
## feedback1:wordtype2:gradetwelfth 0.25000 0.25092 0.996 0.32243
## feedback2:wordtype2:gradetwelfth 0.75000 0.43461 1.726 0.08870 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.374 on 72 degrees of freedom
## Multiple R-squared: 0.5336, Adjusted R-squared: 0.4235
## F-statistic: 4.846 on 17 and 72 DF, p-value: 9.884e-07

6 Use of the phia package for contrasts and simple effects
Two different motivations exist for using either phia or **emmeans* in order to evaluate contrasts and simple
effects. The first is that they produce inferential tests based on Type III SS decompositions. The second is
that they are the only way I know to obtain simple effects.

In the particular data set we are working with here, the only higher order effect that was significant was the
Wordtype by Grade interaction. This means that we would typically only follow up that effect by looking
at simple main effects of one of those factors at levels of the other, as well as their interaction contrasts.
We would also follow up with contrasts on the Feedback factor since its main effect was significant and no
interactions with Feedback were significant.

However, the approach taken here is to demonstrate how the whole suite of effects can be obtained. Initially
this document uses the phia package for these evaluations and makes extensive use of the testInteractions
function from that package. The methods by “holm”, and “Hochberg” are possible for p value adjustments
with contrasts.

6.1 Simple two way interactions
Simple two way interactions can also be obtained (three sets). We don’t expect to be interested in any of
these since the three way interaction was not significant, but we might have had an a-priori hypothesis about
one or more of them, so illustration is included for completeness.

Each of the rows of the tables represent tests of the simple two-way at that level of the factor at which the
effects are examined (e.g.,feedback by grade at levels of grade in the first illustration).

The general strategy in the testInteractions function is to use an argument called “fixed” to specify the
variable at which effects of other factors are to be examined in simple effects. The “across” argument specifies
a variable for which the effect is being requested.

Note that the combined effects of two variables are requested by putting both of them in the “across” argument
- the variable “AT” which these effects are examined is designated by the “fixed” argument.

Reading the table requires some understanding of the idiosyncracies of testInteractions formatting. The
columns labeled (for example) feedback1:wordtype1 are not interactions as the colon implies. The numeric
appendage (e.g., feedback1) means a contrast. The numeric values (e.g., 6, 3.2, etc) are “estimates” of the
underlying contrast. But since we are not examining contrasts here we can ignore these columns. The F tests
are tests of the two different simple two way interactions at the two levels of grade. At least the question of
level of grade is clear in the table - rows.
# next, feedback*wordtype at levels of grade
testInteractions(fit.1aov,fixed=c("grade"), across=c("feedback", "wordtype"),adjust="none")

## F Test:
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## P-value adjustment method: none
## feedback1:wordtype1 feedback2:wordtype1 feedback1:wordtype2
## fifth 6 3.2 -3.2
## twelfth 3 0.2 -0.2
## Residuals
## feedback2:wordtype2 Df Sum of Sq F Pr(>F)
## fifth -2.8 4 23.333 3.0882 0.02098 *
## twelfth 0.2 4 1.333 0.1765 0.94983
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

A second possible set of simple two way interactions is found here, wordtype by grade at levels of feedback.
# first wordtype*grade at levels of feedback
testInteractions(fit.1aov,fixed=c("feedback"), across=c("wordtype","grade"),adjust="none")

## F Test:
## P-value adjustment method: none
## wordtype1 wordtype2 Df Sum of Sq F Pr(>F)
## None -0.2 0.2 2 0.067 0.0176 0.98251
## Positive 2.8 -2.8 2 13.067 3.4588 0.03679 *
## Negative 2.8 -2.8 2 13.067 3.4588 0.03679 *
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

And now the third set:
# next, feedback*grade at levels of wordtype
testInteractions(fit.1aov,fixed=c("wordtype"), across=c("feedback","grade"),adjust="none")

## F Test:
## P-value adjustment method: none
## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## LF_LE -0.6 -0.2 2 0.2 0.0529 0.94847
## HF_LE -0.6 -0.2 2 0.2 0.0529 0.94847
## HF_HE -3.6 -3.2 2 18.2 4.8176 0.01087 *
## Residuals 72 136.0
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The analyst would likely never do all three sets. One one should suffice and it would probably be the one
where the two primary IVs were interacted. In our example, the first one fits the way the ggplot bar graph is
drawn so that is probably what the choice would be.

6.2 Simple-simple main effects
These are effects of one factor at combined levels of two other factors.

First examine the so-called simple, simple main effects (three different sets). These effects would be assessed
after finding significant simple two way interactions. Notice that the testInteractions function accepts
an argument for p value adjustment (e.g., bonferroni/holm/fdr), but that I’ve set it to “none” in these
illustrations.

The general strategy in the testInteractions function is to use an argument called “fixed” to specify the
variable at which effects of other factors are to be examined in simple effects. The “across” argument specifies
a variable for which the effect is being requested.
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The first set here examines effects of wordtype at combinations of the other two factor levels and is one of
the sets of simple simple main effects most visible from the ggplot bar graph above.

Here, and for later tables, “values” of effects are differentiated by the contrasts associated with the factors
although those are aggregated to obtain the simple effects - seen since many of them have multiple df. We
are ignoring those “effect” values here since we have not addressed the contrasts in place at the time the aov
fit was done (default is dummy coding). The exact choice of contrast set doesn’t influence the 2 df simple
simple main effects here.

Notice that each of these have 2 df (three means compared, so 2 df). Later we will break the effects down into
contrasts. Compare the significance test results to the ggplot bar graph. The only significant simple simple
main effects in this table are the wordtype comparisons in the upper panel (fifth grade) for the negative and
positive feedback conditions. This pattern of significance fits what the eye sees in the graph.
# 1, effects of wordtype @ combinations of feedback and grade
testInteractions(fit.1aov,fixed=c("feedback","grade"), across="wordtype",adjust="none")

## F Test:
## P-value adjustment method: none
## wordtype1 wordtype2 Df Sum of Sq F Pr(>F)
## None : fifth 0.0 -0.8 2 1.600 0.4235 0.6564
## Positive : fifth 3.2 -3.6 2 40.933 10.8353 7.696e-05 ***
## Negative : fifth 4.6 -3.8 2 53.733 14.2235 6.226e-06 ***
## None : twelfth 0.2 -1.0 2 2.533 0.6706 0.5146
## Positive : twelfth 0.4 -0.8 2 1.733 0.4588 0.6339
## Negative : twelfth 1.8 -1.0 2 5.200 1.3765 0.2590
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We could also look at other sets of simple simple main effects but would probably only look at one (such as
the immediately preceding one), followed up by contrasts (later in this doc).
# 2, effects of grade @ combinations of feedback and wordtype
testInteractions(fit.1aov,fixed=c("feedback","wordtype"), across="grade",adjust="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## None : LF_LE 0.0 1 0.0 0.0000 1.0000000
## Positive : LF_LE -0.2 1 0.1 0.0529 0.8186747
## Negative : LF_LE -0.4 1 0.4 0.2118 0.6467745
## None : HF_LE 0.0 1 0.0 0.0000 1.0000000
## Positive : HF_LE -0.2 1 0.1 0.0529 0.8186747
## Negative : HF_LE -0.4 1 0.4 0.2118 0.6467745
## None : HF_HE 0.2 1 0.1 0.0529 0.8186747
## Positive : HF_HE -3.0 1 22.5 11.9118 0.0009371 ***
## Negative : HF_HE -3.2 1 25.6 13.5529 0.0004450 ***
## Residuals 72 136.0
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

And the third possible set of simple simple main effects:
# 3, effects of feedback @ combinations of grade and wordtype
testInteractions(fit.1aov,fixed=c("grade","wordtype"), across="feedback",adjust="none")

## F Test:
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## P-value adjustment method: none
## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## fifth : LF_LE -0.2 -0.6 2 0.933 0.2471 0.7818
## twelfth : LF_LE 0.4 -0.4 2 0.533 0.1412 0.8686
## fifth : HF_LE -1.6 -0.8 2 3.733 0.9882 0.3772
## twelfth : HF_LE -1.0 -0.6 2 1.733 0.4588 0.6339
## fifth : HF_HE -4.8 -3.6 2 51.600 13.6588 9.354e-06 ***
## twelfth : HF_HE -1.2 -0.4 2 1.600 0.4235 0.6564
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.3 Simple main effects
In studies where the 3way interaction is not significant, the analyst would progress to examining the omnibus
2way interactions. If any are significant then they would partly be characterized by examining simple main
effects (there are six possible sets here, two each for each of the three possible 2way interactions).

It is not possible to interpret such simple main effects without reference to the tables of collapsed/marginal
means such as those produce above following the initial aov fit OR be examining the redrawn graph that
depicts 2way layouts, collapsed on one of the three factors.

Such a redrawn graph is presented here, to depict the two way layout of wordtype and feedback (a 3x3
structure), since the first of the six sets of SME shown here examines the effect of wordtype at levels of
feedback. If this were actual data analysis of a true data set (rather than a textbook/artifical one), then
we would only look to follow up the wordtype by grade two way interaction since it was the only one of the
three that reached traditional significance levels. But this first graphical illustration permits seeing the more
complex 3x3 arrangement, even though the wordtype by feedback interaction was NS. The reader should
recognize that the effects of wordtype (seen in the plot below) appear to depend on level of feedback.

From this depiction, we might expect to find an effect of wordtype only in the negative and positive feedback
conditions. In reality the 2way interaction tests whether the wordtype effect is different in the three levels of
feedback. It was the general impression that the HF_HE group is lower only in the positive and negative
feedback levels. Nontheless while this impression is clear, the differnece was not significant with the wordtype
by feedback interaction was tested.
# first, summarize the data set to produce a new data frame that ggplot can use
myData2.wg <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("feedback", "wordtype"))
# look at the new data frame that contains the summary statistics
myData2.wg

## feedback wordtype N numrecall sd se ci
## 1 None LF_LE 10 8.4 1.173788 0.3711843 0.8396772
## 2 None HF_LE 10 8.8 1.316561 0.4163332 0.9418111
## 3 None HF_HE 10 7.9 1.286684 0.4068852 0.9204382
## 4 Positive LF_LE 10 7.9 1.370320 0.4333333 0.9802681
## 5 Positive HF_LE 10 8.1 1.370320 0.4333333 0.9802681
## 6 Positive HF_HE 10 5.9 2.024846 0.6403124 1.4484873
## 7 Negative LF_LE 10 8.2 1.316561 0.4163332 0.9418111
## 8 Negative HF_LE 10 7.8 1.229273 0.3887301 0.8793686
## 9 Negative HF_HE 10 5.4 2.170509 0.6863753 1.5526889
#library(ggplot2)
#library(ggthemes)
# Now create the Default bar plot
p3 <- ggplot(myData2.wg, aes(x=feedback, y=numrecall, fill=wordtype)) +

geom_bar(stat="identity", color="black",
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position=position_dodge()) +
geom_errorbar(aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,

position=position_dodge(.9))

p4 <- p3 +labs(title="Words Recalled +/- SEM", x="Feedback", y = "Mean Number Recalled")+
theme_bw() +
theme(panel.grid.major.x = element_blank(),

panel.grid.major.y = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.background = element_blank(),
axis.line.y = element_line(colour="black", size=.7),
axis.line.x = element_line(colour="black", size=.7),
plot.title = element_text(hjust=.5)
) +

scale_fill_manual(values=c('honeydew3','honeydew2', 'honeydew1'))
p4
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The following sequence of tests of six sets of simple main effects is presented only to demonstrate how to
generate each of them. We would probably only examine number 3 or 4.

In the first analysis we find that in the both the negative feedback condition the effect of feedback significant,
as the graph seems to suggest. But note that most of the difference is due to the position of the HF_HE
group. We would pursue that pattern with examination of simple main effect contrasts.
# 1-2 effects of wordtype at levels of feedback, and then feedback at levels of wordtype
# note these are collapsed on grade
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testInteractions(fit.1aov,fixed="feedback", across="wordtype",adjust="none")

## F Test:
## P-value adjustment method: none
## wordtype1 wordtype2 Df Sum of Sq F Pr(>F)
## None 0.1 -0.9 2 4.067 1.0765 0.3462168
## Positive 1.8 -2.2 2 29.600 7.8353 0.0008341 ***
## Negative 3.2 -2.4 2 45.867 12.1412 2.859e-05 ***
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov,fixed="wordtype", across="feedback",adjust="none")

## F Test:
## P-value adjustment method: none
## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## LF_LE 0.1 -0.5 2 1.267 0.3353 0.7162383
## HF_LE -1.3 -0.7 2 5.267 1.3941 0.2546664
## HF_HE -3.0 -2.0 2 35.000 9.2647 0.0002627 ***
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Next we will begin to examine the origins of omnibus wordtype by grade interaction that was significant. In
order to interpret the sets of simples possible in this 3x2 grid of means, we should visualize the outcome.
# first, summarize the data set to produce a new data frame that ggplot can use
myData3.wg <- Rmisc::summarySE(data=bg.3way,measurevar="numrecall", groupvars=c("wordtype", "grade"))
# look at the new data frame that contains the summary statistics
myData3.wg

## wordtype grade N numrecall sd se ci
## 1 LF_LE fifth 15 8.066667 1.279881 0.3304638 0.7087744
## 2 LF_LE twelfth 15 8.266667 1.279881 0.3304638 0.7087744
## 3 HF_LE fifth 15 8.133333 1.302013 0.3361783 0.7210308
## 4 HF_LE twelfth 15 8.333333 1.397276 0.3607752 0.7737858
## 5 HF_HE fifth 15 5.400000 2.292846 0.5920103 1.2697358
## 6 HF_HE twelfth 15 7.400000 1.352247 0.3491486 0.7488493
#library(ggplot2)
#library(ggthemes)
# Now create the Default bar plot
p5 <- ggplot(myData3.wg, aes(x=wordtype, y=numrecall, fill=grade)) +

geom_bar(stat="identity", color="black",
position=position_dodge()) +

geom_errorbar(aes(ymin=numrecall-se, ymax=numrecall+se), width=.2,
position=position_dodge(.9))

p6 <- p5 +labs(title="Words Recalled +/- SEM", x="WordType", y = "Mean Number Recalled")+
theme_bw() +
theme(panel.grid.major.x = element_blank(),

panel.grid.major.y = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.background = element_blank(),
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axis.line.y = element_line(colour="black", size=.7),
axis.line.x = element_line(colour="black", size=.7),
plot.title = element_text(hjust=.5)
) +

scale_fill_manual(values=c('honeydew3','honeydew2', 'honeydew1'))
p6
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In the first of the testInteractions analyses in this next code chunk (#3), the set of simple main effects of
wordtype at levels of grade is produced. From the graph we may expect wordtype to be significant in the
12th graders, but perhaps not in the 5th graders. This is exactly what happened, as seen in the first table.
In the second testInteractions output here (#4) the effect of grade is significant only in the HF_HE
condition, as the visual inspection would have suggested.
# 3-4 effects of wordtype at levels of grade, and then grade at levels of feedback
# note these are collapsed on feedback, respectively
testInteractions(fit.1aov,fixed="grade", across="wordtype",adjust="none")

## F Test:
## P-value adjustment method: none
## wordtype1 wordtype2 Df Sum of Sq F Pr(>F)
## fifth 2.6 -2.73333 2 72.933 19.3059 1.937e-07 ***
## twelfth 0.8 -0.93333 2 8.133 2.1529 0.1236
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov,fixed="wordtype", across="grade",adjust="none")
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## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE -0.2 1 0.3 0.1588 0.6914214
## HF_LE -0.2 1 0.3 0.1588 0.6914214
## HF_HE -2.0 1 30.0 15.8824 0.0001597 ***
## Residuals 72 136.0
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The third omnibus 2way can also be followed up with either of its set of simple main effects.
# 5-6 effects of feedback at levels of grade, and then grade at levels of feedback
# note these are collapsed on wordtype
testInteractions(fit.1aov,fixed="grade", across="feedback",adjust="none")

## F Test:
## P-value adjustment method: none
## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## fifth -2.2 -1.66667 2 32.933 8.7176 0.0004071 ***
## twelfth -0.6 -0.46667 2 2.533 0.6706 0.5145724
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov,fixed="feedback", across="grade",adjust="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## None 0.06667 1 0.033 0.0176 0.894689
## Positive -1.13333 1 9.633 5.1000 0.026957 *
## Negative -1.33333 1 13.333 7.0588 0.009708 **
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.4 Contrast Analyses in factorial designs using phia
Initially, we recreate the custom contrasts for the Wordtype and Feedback factors since they each have more
than two levels. Note that these are the same contrasts employed above in the omnibus analyses, but phia
requires them to be created in a slightly different manner for usage in the testInteraction function. The
exact orthogonal sets employed here were arbitrarily chosen
# first for the feedback factor:
fbc1 <- list(feedback=c(-.5, -.5, 1)) # same as defined above, except using fractions
fbc2 <- list(feedback=c(-1, 1, 0)) # same as defined above, except using fractions
fbc1

## $feedback
## [1] -0.5 -0.5 1.0
fbc2

## $feedback
## [1] -1 1 0
# now for the wordtype factor
wtypec1 <- list(wordtype=c(1, -.5, -.5)) # same as defined above, except using fractions
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wtypec2 <- list(wordtype=c(0, -1, 1)) # same as defined above, except using fractions
wtypec1

## $wordtype
## [1] 1.0 -0.5 -0.5
wtypec2

## $wordtype
## [1] 0 -1 1

6.4.1 Simple Effect Contrasts and Simple Interaction Contrasts

We already obtained 2 and 3-way interaction contrasts above with the summary/split approach and by using
summary.lm to obtain Type III SS equivalents. Here, we obtain simple interaction contrasts and simple effect
contrasts.

In this code, notice that testInteractions takes a “custom” argument and that is where we can specify the
contrast to be used.

6.4.1.1 Simple 2 way interaction contrasts First we examine the simple two-way two way interactions
(even though the 3way is NS) to serve as a template. NEEDS REWORDING Note that the labeling in
the table is odd. The twotestInteraction functions produce the two tables. The first examines the effect
involving the first contrast on feedback (called fbc1 in the custom argument), and the second examines
the second contrast on feedback (called fbc1). Examining the first of the two tables, each row represents
evaluation of a simple two way interaction contrast of the Feedback (first contrast) and Grade at each of the
three levels of Wordtype.

The use of the colon symbol does NOT imply an interaction between those two effects. In addition, the
labeling of the Feedback effect as “feedback1” doesn’t refer to the exact contrast that we called fbc1. It is
just a generic label for the fact that a contrast on feedback was specified. So in the first table, the first F
value of .0794 represents a test of fbc1 by grade AT LF_LE. The second, is the same effect, but AT HF_LE
and so forth. In the second table, the first row evaluates the fbc2 by grade interaction AT LF_LE, with
the F value of .0265 EVEN THOUGH the table still uses the “feedback1” label. The confusion can arise
because the tables do not employ the fbc1 and fbc2 labels that we created. In each table, there are three
tests because there are three levels of Wordtype and the effect is either fbc1 by grade (table 1) or fbc2 by
grade (table 2). This pattern plays out in subsequent implementations as well.
# first, an example of simple 2-way interaction contrasts of feedback with grade at levels of wordtype
testInteractions(fit.1aov, fixed="wordtype", custom=fbc1, adjustment="none", across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 -0.3 1 0.15 0.0794 0.7789
## HF_LE : feedback1 -0.3 1 0.15 0.0794 0.7789
## HF_HE : feedback1 -1.8 1 5.40 2.8588 0.0952 .
## Residuals 72 136.00
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov, fixed="wordtype", custom=fbc2, adjustment="none", across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 -0.2 1 0.05 0.0265 0.87121
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## HF_LE : feedback1 -0.2 1 0.05 0.0265 0.87121
## HF_HE : feedback1 -3.2 1 12.80 6.7765 0.01121 *
## Residuals 72 136.00
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

When both factors in a simple 2way interaction have contrasts then the code specification is slightly more
complex. With the interaction of wordtype and feedback at levels of grade, grade is specified as “fixed”. The
“across” argument is not used. Rather, both contrasts are specified simultaneously in the “custom” argument
and ‘testInteractions understands that the interaction of those two contrasts is to be examined.

Note that the output uses the colon symbol again, but it doesn’t mean interaction. The interaction here is
between fbc1 and wtypec1 (thus an interaction contrast) at fifth grade.
# simple 2-2way interaction contrast of wordtype and grade at levels of feedback
# one requested at a time here, both of the first contrasts (fbc1 and wtypec1) are requested.
testInteractions(fit.1aov, fixed="grade", custom=c(fbc1,wtypec1), adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## fifth : feedback1 : wordtype1 1.50 1 5.00 2.6471 0.1081
## twelfth : feedback1 : wordtype1 0.75 1 1.25 0.6618 0.4186
## Residuals 72 136.00

Code for the other six contrasts available in this set is shown here, but results suppressed to save space.
If one were to run them the same “feedback1” and “wordtype1” labels would appear, but meaning either
fbc1/fbc2 or wtypec1/wtypec2, respectively.
testInteractions(fit.1aov,fixed="grade", custom=c(fbc1,wtypec2), adjustment="none")
testInteractions(fit.1aov,fixed="grade", custom=c(fbc2,wtypec1), adjustment="none")
testInteractions(fit.1aov,fixed="grade", custom=c(fbc2,wtypec2), adjustment="none")

Sometimes we prefer to examine simple interaction comparisons rather than simple interaction contrasts.
That kind of effect is exemplified with this type of code where a contrast is specified for one factor (wordtype
here) and the other factor is not broken into contrasts (feedback here, specified in the “across” argument).
These will be a 2 df interaction contrasts: either wordtype contrast 1 by feedback at levels of grade or
wordtype contrast2 by feedback at levels of grade.

Once again the fifth: and twelfth: notation just specify the levels of grade AT which the simple interaction
comparisons are located.
# now simple 2-way interaction comparisons of wordtype contrasts and feedback at levels of grade
# note that these effects have 2 df
testInteractions(fit.1aov, fixed="grade", custom=wtypec1, adjustment="none", across="feedback")

## F Test:
## P-value adjustment method: none
## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## fifth : wordtype1 3.0 1.6 2 9.267 2.4529 0.0932 .
## twelfth : wordtype1 1.5 0.1 2 1.267 0.3353 0.7162
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov, fixed="grade", custom=wtypec2, adjustment="none", across="feedback")

## F Test:
## P-value adjustment method: none
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## feedback1 feedback2 Df Sum of Sq F Pr(>F)
## fifth : wordtype1 -3.2 -2.8 2 14.067 3.7235 0.02892 *
## twelfth : wordtype1 -0.2 0.2 2 0.067 0.0176 0.98251
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.4.1.2 Simple and simple-simple main effect contrasts Contrasts breaking down the simple-simple
or simple main effects are also available. Once again, care is required in reading the table, which does not
label the different contrasts. The first table is for the fbc1 contrast and the second table for the fbc2 contrast,
each at the six combined levels of Grade and Wordtype in this first illustration.

Once again, the “feedback1” label in the tables is misleading and not necessary. We have to discern which
contrast on feedback is being tested by knowing which code line produced which table.
# Now, how about simple SME contrasts for the feedback factor at
# combined levels of grade and wordtype
testInteractions(fit.1aov, fixed=c("wordtype", "grade"), custom=fbc1, adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : fifth : feedback1 -0.1 1 0.033 0.0176 0.894689
## HF_LE : fifth : feedback1 -0.8 1 2.133 1.1294 0.291452
## HF_HE : fifth : feedback1 -2.4 1 19.200 10.1647 0.002119 **
## LF_LE : twelfth : feedback1 0.2 1 0.133 0.0706 0.791242
## HF_LE : twelfth : feedback1 -0.5 1 0.833 0.4412 0.508677
## HF_HE : twelfth : feedback1 -0.6 1 1.200 0.6353 0.428041
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov, fixed=c("wordtype", "grade"), custom=fbc2, adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : fifth : feedback1 -0.6 1 0.9 0.4765 0.4922
## HF_LE : fifth : feedback1 -0.8 1 1.6 0.8471 0.3605
## HF_HE : fifth : feedback1 -3.6 1 32.4 17.1529 9.265e-05 ***
## LF_LE : twelfth : feedback1 -0.4 1 0.4 0.2118 0.6468
## HF_LE : twelfth : feedback1 -0.6 1 0.9 0.4765 0.4922
## HF_HE : twelfth : feedback1 -0.4 1 0.4 0.2118 0.6468
## Residuals 72 136.0
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Next, we evaluate Simple Main effect contrasts of Feedback at levels of Wordtype, collapsed on Grade. These
next three code chunks also produce the two contrast tests with and without a “holm” adjustment.

The first code chunk is thus the test of feedback contrast 1 at levels of wordtype, with no p value adjustment.
Once again, the “feedback1” label can be ignored. As an interpretation example, consider the third F test
with a value of 7.94. This effect is feedback contrast 1 in the HF_HE group (collapsed on grade)
# or SME contrasts at levels of wordtype (collapsed on grade)
testInteractions(fit.1aov, fixed=c("wordtype"), custom=fbc1, adjustment="none")

## F Test:
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## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 0.05 1 0.017 0.0088 0.925423
## HF_LE : feedback1 -0.65 1 2.817 1.4912 0.226018
## HF_HE : feedback1 -1.50 1 15.000 7.9412 0.006234 **
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The next chunk does the same analysis with a “holm” adjustment.
# note that adjustment for Type I error inflation can be done. The "adjustment"
# argument uses the methods available in p.adjust
testInteractions(fit.1aov, fixed=c("wordtype"), custom=fbc1, adjustment="holm")

## F Test:
## P-value adjustment method: holm
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 0.05 1 0.017 0.0088 0.9254
## HF_LE : feedback1 -0.65 1 2.817 1.4912 0.4520
## HF_HE : feedback1 -1.50 1 15.000 7.9412 0.0187 *
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

And the same approach is used for the second feedback contrast.
testInteractions(fit.1aov, fixed=c("wordtype"), custom=fbc2, adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 -0.5 1 1.25 0.6618 0.418620
## HF_LE : feedback1 -0.7 1 2.45 1.2971 0.258526
## HF_HE : feedback1 -2.0 1 20.00 10.5882 0.001735 **
## Residuals 72 136.00
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov, fixed=c("wordtype"), custom=fbc2, adjustment="holm")

## F Test:
## P-value adjustment method: holm
## Value Df Sum of Sq F Pr(>F)
## LF_LE : feedback1 -0.5 1 1.25 0.6618 0.517053
## HF_LE : feedback1 -0.7 1 2.45 1.2971 0.517053
## HF_HE : feedback1 -2.0 1 20.00 10.5882 0.005204 **
## Residuals 72 136.00
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

There are many other simple main effect contrasts that could be exmained (following up on the six sets of
possible simple main effects described above). The important to examine in the context of this data set would
be contrasts on wordtype at levels of grade, since the omnibus wordtype by grade interaction was significant.
In order to shorten this doc, only one of those SME contrasts is shown here, wordtype contrast2 @ fifth grade.
testInteractions(fit.1aov, fixed="grade", custom=fbc2, adjustment="none")
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## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## fifth : feedback1 -1.66667 1 20.833 11.0294 0.001411 **
## twelfth : feedback1 -0.46667 1 1.633 0.8647 0.355532
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.4.2 3way interaction contrasts with phia

Next, we will examine 3-way interaction contrasts. This shows that phia can recreate what we did above
with the summary/split approach and with the summary.lm function. Those two match because of the equal
sample sizes in this example data set. If the data set were unbalanced, the tests here, from testInteractions
would match the squared t-values from tests obtained in the summary.lm output.

Here, two of the three factors have contrasts available and those specifications are put in the “custom”
argument. The third factor is only a 2-level factor (already a contrasts), and can just be specified in the
“across” argument.
testInteractions(fit.1aov, custom=c(fbc1,wtypec1), adjustment="none",across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 0.75 1 0.625 0.3309 0.5669
## Residuals 72 136.000
testInteractions(fit.1aov, custom=c(fbc1,wtypec2), adjustment="none",across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 -1.5 1 1.875 0.9926 0.3224
## Residuals 72 136.000
testInteractions(fit.1aov, custom=c(fbc2,wtypec1), adjustment="none",across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 1.5 1 1.875 0.9926 0.3224
## Residuals 72 136.000
testInteractions(fit.1aov, custom=c(fbc2,wtypec2), adjustment="none",across="grade")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 -3 1 5.625 2.9779 0.0887 .
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.4.3 Two-way interaction contrasts

By leaving the “across=grade” argument out of the above code chunk, we can obtain the two-way interaction
contrasts of Feedback an Wordtype (collapsed on Grade).
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testInteractions(fit.1aov, custom=c(fbc1,wtypec1), adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 1.125 1 5.625 2.9779 0.0887 .
## Residuals 72 136.000
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
testInteractions(fit.1aov, custom=c(fbc1,wtypec2), adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 -0.85 1 2.408 1.275 0.2626
## Residuals 72 136.000
testInteractions(fit.1aov, custom=c(fbc2,wtypec1), adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 0.85 1 2.408 1.275 0.2626
## Residuals 72 136.000
testInteractions(fit.1aov, custom=c(fbc2,wtypec2), adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## feedback1 : wordtype1 -1.3 1 4.225 2.2368 0.1391
## Residuals 72 136.000

Finally, in this data set, the most interesting interaction effect to follow up would have been the Wordtype
By Grade interaction which was the only significant one. Simple main effects of Wordtype at Levels of Grade
(and the contrasts of those SME) were obtained above. Here, the interaction contrasts were obtained to
decompose this two way interaction.

Notice that the sum of the SS for the two effects equals the SS for the Wordtype by Grade interaction seen in
the initial ANOVA summary table, as it should for an orthogonal partitioning.

In this pair of analyses, only the second of the two contrasts is significant and this should not be surprising.
Most of what was varying in the wordtype by grade array of means was the position of the HF_HE group.
So, it makes sense that the second contrast which compares HF_LE to HF_HE interacts with grade since
the difference is larger in the 12th graders.
testInteractions(fit.1aov, custom=wtypec1, across="grade", adjustment="none")

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## wordtype1 0.9 1 4.05 2.1441 0.1475
## Residuals 72 136.00
testInteractions(fit.1aov, custom=wtypec2, across="grade", adjustment="none")

## F Test:
## P-value adjustment method: none
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## Value Df Sum of Sq F Pr(>F)
## wordtype1 -1.8 1 12.15 6.4324 0.01338 *
## Residuals 72 136.00
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.5 Conclusion about use of phia and testInteractions

The testInteractions function is very powerful, permitting all simple and contrast effects to be specified
(we did not examine main effect contrasts here, but they can be done as was outlined in the 2 factor ANOVA
tutorial document). I am very positive about the relative ease of use of the arguments in testInteractions.
However, the layout and labeling in the tables produced by the function are difficult. It was only with
careful comparison to other known analyses that I was able to be certain what the testInteraction function
was testing, at times. With more regular use, the style of the table layout becomes easier to understand,
but for the novice user the lableling (e.g., :feedback1”) can be misleading. If it were not for this output
formatting difficulty, I would be strongly recommending use of the phia functions for this type of analysis.
But emmeans may produce output that is more easily interpreted for most users.

7 Use of emmeans for contrasts and simple effects
The tools of the emmeans package can produce all of the same analyses as those just accomplished above
with phia. Some types of effects are slightly easier to obtain from emmeans, but others are more difficult
(e.g., interaction contrasts). Either package provides strong tools for these follow up analyses.

This emmeans section does not perform the detailed examination of nearly all possible contrasts as was
done in the phia section. Instead a few examples are used in order to provide templates and the choice of
which effects to examine is partly driven by patterns in the data set.

7.1 Simple two-way interactions.
The logic and introductory wording here matches that in the phia section above:

Simple two way interactions are available (three sets). We don’t expect to be interested in any of these since
the three way interaction was not significant, but we might have had an a-priori hypothesis about one or
more of them, so illustration is included for completeness.

wordtype by grade @ levels of feedback wordtype by feedback @ levels of grade feedback by grade @ levels of
wordtype

Even if there were a significant 3way interaction, we would probably only have been intersted in one of these
three sets of simple two-ways. It would probably have been the second one since wordtype and feedback are
the two primary manipulated IVs.

Either the aov or anova_car fit objects will work with emmeans. We will use the anova_car object here.
First, extract the grid of means and other descriptive info, for all of the cells.
wgf.emm <- emmeans(fit_base.afex,~wordtype:grade:feedback)
wgf.emm

## wordtype grade feedback emmean SE df lower.CL upper.CL
## LF_LE fifth None 8.4 0.615 72 7.17 9.63
## HF_LE fifth None 8.8 0.615 72 7.57 10.03
## HF_HE fifth None 8.0 0.615 72 6.77 9.23
## LF_LE twelfth None 8.4 0.615 72 7.17 9.63
## HF_LE twelfth None 8.8 0.615 72 7.57 10.03
## HF_HE twelfth None 7.8 0.615 72 6.57 9.03
## LF_LE fifth Positive 7.8 0.615 72 6.57 9.03
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## HF_LE fifth Positive 8.0 0.615 72 6.77 9.23
## HF_HE fifth Positive 4.4 0.615 72 3.17 5.63
## LF_LE twelfth Positive 8.0 0.615 72 6.77 9.23
## HF_LE twelfth Positive 8.2 0.615 72 6.97 9.43
## HF_HE twelfth Positive 7.4 0.615 72 6.17 8.63
## LF_LE fifth Negative 8.0 0.615 72 6.77 9.23
## HF_LE fifth Negative 7.6 0.615 72 6.37 8.83
## HF_HE fifth Negative 3.8 0.615 72 2.57 5.03
## LF_LE twelfth Negative 8.4 0.615 72 7.17 9.63
## HF_LE twelfth Negative 8.0 0.615 72 6.77 9.23
## HF_HE twelfth Negative 7.0 0.615 72 5.77 8.23
##
## Confidence level used: 0.95

In order to test the simple two way interactions, a direct and isolated approach is not possible. Instead, we
request what amounts to examination of three kinds of effects at the levels of feedback. This code provides
the simple main effects of both wordtype and grade as well as their interaction, all AT levels of feedback,
using the omnibus error term. Thus the simple two-way interactions that we set out to obtain are the third
effect tested in each of these three sets of analyses. Note that the second and third of them have identical F
and p values - this is correct output, but suggests that the data set may have been fabricated for use in the
Keppel textbook.
# first, examine wordtype*grade at levels of feedback
joint_tests(wgf.emm, by="feedback")

## feedback = None:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 1.076 0.3462
## grade 1 72 0.018 0.8947
## wordtype:grade 2 72 0.018 0.9825
##
## feedback = Positive:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 7.835 0.0008
## grade 1 72 5.100 0.0270
## wordtype:grade 2 72 3.459 0.0368
##
## feedback = Negative:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 12.141 <.0001
## grade 1 72 7.059 0.0097
## wordtype:grade 2 72 3.459 0.0368

Now the other two sets of simple two-ways are obtained.
# second wordtype*feedback at levels of grade
(joint_tests(wgf.emm, by="grade"))

# second grade*feedback at levels of wordtype
joint_tests(wgf.emm, by="wordtype")

One thing that I do not like about using emmeans functions for these types of followup analyses is that the
tabled results do not provide SS and MS for the effects. It is useful to doublecheck software for its accuracy
by verifying that things work out as they should. For example the SS for the set of grade*feedback simple
two ways at levels of wordtype should sum to the pooling of the omnibus two way of grade by feedback and
the three way of grade by feedback by wordtype. We could work backwards from the F values (using the
MSerror from above) to find these values, but that added work is not completed here. Initial code to show
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how to manually find a SS from the F value is here:
# e.g. for grade by feedback at HF_HE
# the F value was 4.818
# df for this simple two way is 2
# MSerror of 1.889 from the omnibus analyses above
df_effect <- 2
MSeffect <- 1.889*4.818
SSeffect <- MSeffect*df_effect
SSeffect

## [1] 18.2024

Doing this with the other two would provide the value that when summed should equal the pooled SS
described above.

7.2 Simple Simple main effects
Since the 3way interaction was not significant, the analyst would probably not go on to examine simple simple
main effects. Nonetheless one set is outlined here for the sake of demonstrating the emmeans capability.

Working from the full grid of means from all cells (the wgf.emm grid), we can specify the oneway type of
question that simple simple main effects ask. The variable to be examined is wordtype - at the different levels
of feedback and grade combined.

A repitition of the cell means graph here can help visualization of where the question is asked. With this plot
it is reinforced that the 2df effect of wordtype can be examined in six places (the combinations of feedback
and grade)
p2
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The briefest way to request the simple simple main effects is to use the joint_test function on the 3way
grid of means. Note that the focal variable is not directly named in an argument. Rather, it is implied
because the wgf.emm object contains means from combinations of all three IVs. When the feedback and
grade variables are set as the variables AT which the questions are to be asked (by “by”). that leaves only
wordtype as the IV of the effect.

Not surprisingly, the only places that wordtype is a significant effect is in the negative and positive fifth grade
conditions.
joint_tests(wgf.emm, by=c("feedback","grade"))

## feedback = None, grade = fifth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 0.424 0.6564
##
## feedback = Positive, grade = fifth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 10.835 0.0001
##
## feedback = Negative, grade = fifth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 14.224 <.0001
##
## feedback = None, grade = twelfth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 0.671 0.5146
##
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## feedback = Positive, grade = twelfth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 0.459 0.6339
##
## feedback = Negative, grade = twelfth:
## model term df1 df2 F.ratio p.value
## wordtype 2 72 1.376 0.2590

7.3 Simple Main Effects.
In this particular data set the 3way interaction was not significant and the only two way interaction that was
significant was the wordtype by grade effect. The graph of these collapsed/marginal means is redrawn here
to provide a reference point.
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Now extract descriptive stats into an emmeans grid.
w.g.emm <- emmeans(fit_base.afex, "wordtype", by="grade")

## NOTE: Results may be misleading due to involvement in interactions
w.g.emm

## grade = fifth:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.07 0.355 72 7.36 8.77
## HF_LE 8.13 0.355 72 7.43 8.84
## HF_HE 5.40 0.355 72 4.69 6.11
##
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## grade = twelfth:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.27 0.355 72 7.56 8.97
## HF_LE 8.33 0.355 72 7.63 9.04
## HF_HE 7.40 0.355 72 6.69 8.11
##
## Results are averaged over the levels of: feedback
## Confidence level used: 0.95

Now perform the tests of wordtype at levels of grade:
test(contrast(w.g.emm),joint=TRUE, adjust=none)

## grade df1 df2 F.ratio p.value note
## fifth 2 72 19.306 <.0001 d
## twelfth 2 72 2.153 0.1236 d
##
## d: df1 reduced due to linear dependence

7.4 Contrasts with emmeans
There are five places where contrasts will be demonstrated here. These are on the 3way and one 2way
interaction, on the set of simple simple main effects examined above, the simple main effects, and the main
effects. We will not do all possible ones but be guided (partly) by the outcome of the omnibus tests.

It is easier to begin with the lower order effects.

7.4.1 Main Effect contrasts and pairwise main effect comparisons

In this data set, feedback did not interact with other factors, so we could examine contrasts on that main
effect.
f.emm <- emmeans(fit_base.afex, "feedback")

## NOTE: Results may be misleading due to involvement in interactions
f.emm

## feedback emmean SE df lower.CL upper.CL
## None 8.37 0.251 72 7.87 8.87
## Positive 7.30 0.251 72 6.80 7.80
## Negative 7.13 0.251 72 6.63 7.63
##
## Results are averaged over the levels of: wordtype, grade
## Confidence level used: 0.95

The orthogonal contrast set requested here for this factor is different than the one employed earlier in this
document. Here, the Helmert set is specified since the levels are a control (first level) and two treatment
conditions. The change was also made just to remind the user that a priori choices should drive contrast
choice. In examining the means from the grid just produced, the expectation would be that the first of these
two contrasts would account for the bulk of the feedback main effect variation, and it does. This change is
also why the tests of these two contrasts do not match what was produced with the summary.lm analysis on
the ominibus model above.
lincombs_f <- contrast(f.emm,

list(ac1=c(2, -1, -1),
ac2=c(0, 1,-1)))

test(lincombs_f, adjust="none")
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## contrast estimate SE df t.ratio p.value
## ac1 2.300 0.615 72 3.742 0.0004
## ac2 0.167 0.355 72 0.470 0.6400
##
## Results are averaged over the levels of: wordtype, grade

It is worth noting at this point that there is not an obvious way of obtaining effect sizes with these types of
emmeans analyses. In addition, since the output simply does a t-test, it is not possible to use a presented
table of SS to calculate eta or partial eta squareds manually. This is a downside of using emmeans (or
phia).

It is also worth remembering that the emmeans approach can also produce adjusted p values. The main
effect contrast test is repeated here with a request for bonferroni-sidak correction of the p values (others are
possible.
test(lincombs_f, adjust="sidak")

## contrast estimate SE df t.ratio p.value
## ac1 2.300 0.615 72 3.742 0.0007
## ac2 0.167 0.355 72 0.470 0.8704
##
## Results are averaged over the levels of: wordtype, grade
## P value adjustment: sidak method for 2 tests

Pairwise comparisons can also be performed, with Tukey-adjusted p values. Note that since the error df is
specified as 72, the pooled within-cell error term is used, appropriately if there is homogeneity of variance.
pairs(f.emm, adjust="tukey")

## contrast estimate SE df t.ratio p.value
## None - Positive 1.067 0.355 72 3.006 0.0101
## None - Negative 1.233 0.355 72 3.476 0.0025
## Positive - Negative 0.167 0.355 72 0.470 0.8857
##
## Results are averaged over the levels of: wordtype, grade
## P value adjustment: tukey method for comparing a family of 3 estimates

7.4.2 Simple Main Effect Contrasts

This section focuses on simple main effect following up on the wordtype by grade interaction since that was
the only two-way interaction that was significant. It can be visualized again with this graph.
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The contrast set on the wordtype variable is also the helmert set. Based on the visual patterns of the means
we might expect that both contrasts on wordtype would be significant in fifth graders and neither in 12th
graders. This is precisely what the outcome is.
lincombs_w <- contrast(w.g.emm,

list(ac1=c(2, -1, -1),
ac2=c(0, 1,-1)))

test(lincombs_w, adjust="none")

## grade = fifth:
## contrast estimate SE df t.ratio p.value
## ac1 2.600 0.869 72 2.991 0.0038
## ac2 2.733 0.502 72 5.447 <.0001
##
## grade = twelfth:
## contrast estimate SE df t.ratio p.value
## ac1 0.800 0.869 72 0.920 0.3605
## ac2 0.933 0.502 72 1.860 0.0670
##
## Results are averaged over the levels of: feedback

7.4.3 Simple Simple Main effect contrasts

Since we examined the Simple Simple main effect of wordtype at combined levels of feedback and grade above,
we will now decompose those effects into their simple simple main effect contrasts. It is worth seeing the
graph of the cell means again in order to visualize where those simple simple main effects and their contrasts
originate.
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The contrast set will match what was used for wordtype earlier in the document, the Helmert set.
w.gf.emm <- emmeans(fit_base.afex, "wordtype", by=c("grade","feedback"))
w.gf.emm

## grade = fifth, feedback = None:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.4 0.615 72 7.17 9.63
## HF_LE 8.8 0.615 72 7.57 10.03
## HF_HE 8.0 0.615 72 6.77 9.23
##
## grade = twelfth, feedback = None:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.4 0.615 72 7.17 9.63
## HF_LE 8.8 0.615 72 7.57 10.03
## HF_HE 7.8 0.615 72 6.57 9.03
##
## grade = fifth, feedback = Positive:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 7.8 0.615 72 6.57 9.03
## HF_LE 8.0 0.615 72 6.77 9.23
## HF_HE 4.4 0.615 72 3.17 5.63
##
## grade = twelfth, feedback = Positive:
## wordtype emmean SE df lower.CL upper.CL
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## LF_LE 8.0 0.615 72 6.77 9.23
## HF_LE 8.2 0.615 72 6.97 9.43
## HF_HE 7.4 0.615 72 6.17 8.63
##
## grade = fifth, feedback = Negative:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.0 0.615 72 6.77 9.23
## HF_LE 7.6 0.615 72 6.37 8.83
## HF_HE 3.8 0.615 72 2.57 5.03
##
## grade = twelfth, feedback = Negative:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.4 0.615 72 7.17 9.63
## HF_LE 8.0 0.615 72 6.77 9.23
## HF_HE 7.0 0.615 72 5.77 8.23
##
## Confidence level used: 0.95
lincombs_w.gf <- contrast(w.gf.emm,

list(ac1=c(2, -1, -1),
ac2=c(0, 1,-1)))

test(lincombs_w.gf, adjust="none")

## grade = fifth, feedback = None:
## contrast estimate SE df t.ratio p.value
## ac1 0.0 1.506 72 0.000 1.0000
## ac2 0.8 0.869 72 0.920 0.3605
##
## grade = twelfth, feedback = None:
## contrast estimate SE df t.ratio p.value
## ac1 0.2 1.506 72 0.133 0.8947
## ac2 1.0 0.869 72 1.150 0.2538
##
## grade = fifth, feedback = Positive:
## contrast estimate SE df t.ratio p.value
## ac1 3.2 1.506 72 2.125 0.0370
## ac2 3.6 0.869 72 4.142 0.0001
##
## grade = twelfth, feedback = Positive:
## contrast estimate SE df t.ratio p.value
## ac1 0.4 1.506 72 0.266 0.7912
## ac2 0.8 0.869 72 0.920 0.3605
##
## grade = fifth, feedback = Negative:
## contrast estimate SE df t.ratio p.value
## ac1 4.6 1.506 72 3.055 0.0032
## ac2 3.8 0.869 72 4.372 <.0001
##
## grade = twelfth, feedback = Negative:
## contrast estimate SE df t.ratio p.value
## ac1 1.8 1.506 72 1.196 0.2358
## ac2 1.0 0.869 72 1.150 0.2538
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7.4.4 Two way interaction contrasts

Once again the emphasis is on the wordtype by grade interaction since that was the only omnibus 2way
interaction that was significant.

First we set up the 3x2 grid that dimensions wordtype and grade, collapsed on feedback.
wg.emm <- emmeans(fit_base.afex, c("wordtype","grade"))

## NOTE: Results may be misleading due to involvement in interactions
wg.emm

## wordtype grade emmean SE df lower.CL upper.CL
## LF_LE fifth 8.07 0.355 72 7.36 8.77
## HF_LE fifth 8.13 0.355 72 7.43 8.84
## HF_HE fifth 5.40 0.355 72 4.69 6.11
## LF_LE twelfth 8.27 0.355 72 7.56 8.97
## HF_LE twelfth 8.33 0.355 72 7.63 9.04
## HF_HE twelfth 7.40 0.355 72 6.69 8.11
##
## Results are averaged over the levels of: feedback
## Confidence level used: 0.95
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Using emmeans for interaction contrasts is a bit more complex. It requires passing a whole contrast vector
rather than just the main effect contrasts - in other words, emmeans cannot combine single IV contrasts to
obtain the coefficients for an interaction contrast. We have to do it first. And, the order has to match the
order of the cells in the grid.
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One approach is to take the contrast of interest for wordtype (this initial example is with the first of the two
contrasts of interest in the Helmert set) and using matrix operations multiply it by the single contrast for
grade. This produces a list that has to be “unlisted” to create a string of six coefficients in order for the six
cells of the 3x2.

These operations produce ic1 and ic2 which are the strings of coefficients for the two interaction contrasts for
the wordtype by grade 2way interaction.
# first, make sure that the wordtype coefficients are helmert
# follows from changing to that specification in a section above
contrasts(bg.3way$wordtype)

## [,1] [,2]
## LF_LE 2 0
## HF_LE -1 -1
## HF_HE -1 1
wc <- contrasts(bg.3way$wordtype)
wc

## [,1] [,2]
## LF_LE 2 0
## HF_LE -1 -1
## HF_HE -1 1
# now make sure the contrast for grade is 1, -1
contrasts(bg.3way$grade) <- contr.sum
gc <- contrasts(bg.3way$grade)
gc

## [,1]
## fifth 1
## twelfth -1
# now create the 6 coefficient interaction contrast vectors
# (two of them)
ic1 <- wc[,1]%*%t(gc)
ic1 <- matrix(unlist(ic1), nrow=1)
ic2 <- wc[,2]%*%t(gc)
ic2 <- matrix(unlist(ic2), nrow=1)
ic1

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 -1 -1 -2 1 1
ic2

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 -1 1 0 1 -1

Now that the contrast vectors are known, they can be passed to the test function.

If we look at the graph, we can see that the HF_LE group differs from HF_HE in fifth graders more than it
does in 12th graders. This is exactly what the second interaction contrast tests and it is significant.
lincombs.intwg <- contrast(wg.emm,

list(intc1=c(2,-1,-1,-2,1,1),
intc2=c(0,1,-1,0,-1,1))

)
test(lincombs.intwg, adjust="none")
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## contrast estimate SE df t.ratio p.value
## intc1 1.8 1.23 72 1.464 0.1475
## intc2 1.8 0.71 72 2.536 0.0134
##
## Results are averaged over the levels of: feedback

7.4.5 Simple two way interaction contrasts contrasts

The wordtype by feedback interaction at levels of grade is a good illustration for simple two-way interaction
contrasts because of the way that the base graph was set up.
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wf.g.emm <- emmeans(fit_base.afex,~wordtype:feedback, by="grade")
wf.g.emm

## grade = fifth:
## wordtype feedback emmean SE df lower.CL upper.CL
## LF_LE None 8.4 0.615 72 7.17 9.63
## HF_LE None 8.8 0.615 72 7.57 10.03
## HF_HE None 8.0 0.615 72 6.77 9.23
## LF_LE Positive 7.8 0.615 72 6.57 9.03
## HF_LE Positive 8.0 0.615 72 6.77 9.23
## HF_HE Positive 4.4 0.615 72 3.17 5.63
## LF_LE Negative 8.0 0.615 72 6.77 9.23
## HF_LE Negative 7.6 0.615 72 6.37 8.83
## HF_HE Negative 3.8 0.615 72 2.57 5.03
##
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## grade = twelfth:
## wordtype feedback emmean SE df lower.CL upper.CL
## LF_LE None 8.4 0.615 72 7.17 9.63
## HF_LE None 8.8 0.615 72 7.57 10.03
## HF_HE None 7.8 0.615 72 6.57 9.03
## LF_LE Positive 8.0 0.615 72 6.77 9.23
## HF_LE Positive 8.2 0.615 72 6.97 9.43
## HF_HE Positive 7.4 0.615 72 6.17 8.63
## LF_LE Negative 8.4 0.615 72 7.17 9.63
## HF_LE Negative 8.0 0.615 72 6.77 9.23
## HF_HE Negative 7.0 0.615 72 5.77 8.23
##
## Confidence level used: 0.95

For this analysis we change the contrasts to better fit the pattern seen in the graph - this is blatantly post
hoc, but we can “see” the possibility of a 2way interaction in grade 5 but not grade 12 data. And most of
that is the way that the third wordtype level (HF_HE) differs from the other two and how that, in turn,
depends on whether one is examining feedback condition 1 (none) vs. 2 and 3 (positive and negative). This
sets up one primary interaction contrast that will be pursued as a template for how to do any/all simple
interaction contrasts.

A guiding principle in construction of these contrasts is that the interaction contrast vector has to match the
pattern of the order of the 9 cells in the grid of means shown just above.
# change to reverse helmert
reverse <- matrix(c(-1,-1,2,1,-1,0),ncol=2)
reverse

## [,1] [,2]
## [1,] -1 1
## [2,] -1 -1
## [3,] 2 0
contrasts(bg.3way$wordtype) <- reverse
wc <- contrasts(bg.3way$wordtype)
wc

## [,1] [,2]
## LF_LE -1 1
## HF_LE -1 -1
## HF_HE 2 0
# set feedback contrasts to helmert
helmert <- matrix(c(2,-1,-1,0,1,-1),ncol=2)
contrasts(bg.3way$feedback) <- helmert
fb <- contrasts(bg.3way$feedback)
fb

## [,1] [,2]
## None 2 0
## Positive -1 1
## Negative -1 -1
# now create the set of 9-coefficient # interaction contrast vectors
# (four of them)
wc1byfb1 <- wc[,1]%*%t(fb[,1])
wc1byfb1 <- matrix(unlist(wc1byfb1), nrow=1)
wc1byfb2 <- wc[,1]%*%t(fb[,2])
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wc1byfb2 <- matrix(unlist(wc1byfb2), nrow=1)
wc2byfb1 <- wc[,2]%*%t(fb[,2])
wc2byfb1 <- matrix(unlist(wc2byfb1), nrow=1)
wc2byfb2 <- wc[,2]%*%t(fb[,2])
wc2byfb2 <- matrix(unlist(wc2byfb2), nrow=1)

For demonstration, we will focus only on the first of the four interaction contrasts - since that is the post hoc
impression referred to above.
wc1byfb1

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] -2 -2 4 1 1 -2 1 1 -2

Again, note that the order of the coefficients is important - it matches the cell order from the grid of means
shown above. A block diagram/table can help here.

## # A tibble: 3 x 4
## feedback_rows LF_LE HF_LE HF_HE
## <chr> <chr> <chr> <chr>
## 1 none -2 1 1
## 2 positive -2 1 1
## 3 negative 4 -2 -2

Wordtype_c1 by Feedback_c1 Coefficients
wordtype_columns

feedback_rows LF_LE HF_LE HF_HE
none -2 1 1
positive -2 1 1
negative 4 -2 -2

In R, there should be a way to pass those nine coefficients in the wc1byfb1 vector to the emmeans::contrast
function but there is a gap in my R understanding so I’ve just typed them in manually.

The analysis shows what was expected. The simple interaction of the first contrast of wordtype and the first
contrast of feedback produced a significant outcome in fifth graders but not in 12th grades, as the graph
implies, visually. It is worth recalling here that even though the pattern appears to differ in 5th and 12th
graders, the three way interaction was not significant. We can’t simple use the presence and absence of
significance in simple effects to imply the presence of a higher order effect - it needs to be tested. On the other
hand, if these simple interaction contrasts were a priori hypotheses, then there is a rationale for examining
them without the presence of an omnibus 3way interaction.
lincombs.intwf.g <- contrast(wf.g.emm,

list(intcontr1=
c(-2,-2,4,1,1,-2,1,1,-2)
))

test(lincombs.intwf.g, adjust="none")

## grade = fifth:
## contrast estimate SE df t.ratio p.value
## intcontr1 12.6 3.69 72 3.417 0.0010
##
## grade = twelfth:
## contrast estimate SE df t.ratio p.value
## intcontr1 0.6 3.69 72 0.163 0.8712
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7.4.6 Three way interaction contrasts

The simplest way of obtaining the 3 way interaction contrasts is to return to the use of summary.lm on the
basic aov fit object as outlined in section 5.1.1 above. emmeans can also produce the three-way interaction
contrasts, but with much labor.

For the data set under analysis here, the 3 way interaction was NS, so we would probably not undertake to
evaluate these interaction contrasts unless there were a priori reasons to do so. However, they are shown
here anyway in order to provide a template for situations where their evaluation would be important.

7.4.6.1 Using summary.lm Here is the repetition of how it was done in section 5.1.1. First, change the
contrast set to the desired ones. The sets for wordtype and feedback are the same ones used in the previous
emmans section where the simple two way interaction of wordtype and feedback was partitioned into contrasts.
Note that these are different contrast sets than those used in the earlier section 5.1.1 so the results will not
match.
contrasts.wordtype <- matrix(c(-1,-1,2,1,-1,0),ncol=2)
contrasts(bg.3way$wordtype) <- contrasts.wordtype
contrasts(bg.3way$wordtype)

## [,1] [,2]
## LF_LE -1 1
## HF_LE -1 -1
## HF_HE 2 0
contrasts.feedback <- matrix(c(2,-1,-1,0,1,-1),ncol=2)
contrasts(bg.3way$feedback) <- contrasts.feedback
contrasts(bg.3way$feedback)

## [,1] [,2]
## None 2 0
## Positive -1 1
## Negative -1 -1

The grade factor only has two levels so in a sense, it is already a contrast, but the default coding is dummy
coding so we need to change it as well - one vector.
contrasts.grade <- matrix(c(1,-1),ncol=1)
contrasts(bg.3way$grade) <- contrasts.grade
contrasts(bg.3way$grade)

## [,1]
## fifth 1
## twelfth -1

Now refit the basic aov model, using the factors with these redefined orthogonal contrast sets. Identical
omnibus outcome as in early sections 3 and 5
fit.2aov <- aov(numrecall~wordtype*feedback*grade,data=bg.3way)
car::Anova(fit.2aov, type=3)

## Anova Table (Type III tests)
##
## Response: numrecall
## Sum Sq Df F value Pr(>F)
## (Intercept) 5198.4 1 2752.0941 < 2.2e-16 ***
## wordtype 64.9 2 17.1706 7.993e-07 ***
## feedback 26.9 2 7.1118 0.001519 **
## grade 14.4 1 7.6235 0.007304 **
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## wordtype:feedback 14.7 4 1.9412 0.112829
## wordtype:grade 16.2 2 4.2882 0.017397 *
## feedback:grade 8.6 2 2.2765 0.109987
## wordtype:feedback:grade 10.0 4 1.3235 0.269461
## Residuals 136.0 72
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Recall that if we use summary.lm tests of the regression coefficients are provided and these are the main
effect, two way interaction and 3 way interaction contrast vectors - accomplished with t-tests. They are type
3 SS calculations, so these interaction contrasts suit our purposes.

There are four interaction contrasts. We might label them:

1. Wc1 by FBc1 by grade
2. Wc2 by FBc1 by grade
3. Wc1 by FBc2 by grade
4. Wc2 by FBc2 by grade

And they are in that order in the output.

Notice that only the first is significant. In fact the t values for the 2nd, 3rd, and fourth are all zero. This
means that all of the 3way interaction is associated with that first contrast. This never happens, so we can
assume that the data set is a fabricated textbook data set.

Nonetheless, this provides tests of the 3 way interaction contrasts. Unfortunately, it does not provide
summary.lm(fit.2aov)

##
## Call:
## aov(formula = numrecall ~ wordtype * feedback * grade, data = bg.3way)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2 -1.0 0.1 1.0 2.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.600e+00 1.449e-01 52.460 < 2e-16 ***
## wordtype1 -6.000e-01 1.024e-01 -5.857 1.3e-07 ***
## wordtype2 -3.333e-02 1.774e-01 -0.188 0.851509
## feedback1 3.833e-01 1.024e-01 3.742 0.000364 ***
## feedback2 8.333e-02 1.774e-01 0.470 0.640011
## grade1 -4.000e-01 1.449e-01 -2.761 0.007304 **
## wordtype1:feedback1 1.833e-01 7.244e-02 2.531 0.013560 *
## wordtype2:feedback1 -8.333e-02 1.255e-01 -0.664 0.508677
## wordtype1:feedback2 8.333e-02 1.255e-01 0.664 0.508677
## wordtype2:feedback2 -1.500e-01 2.173e-01 -0.690 0.492245
## wordtype1:grade1 -3.000e-01 1.024e-01 -2.929 0.004557 **
## wordtype2:grade1 -7.448e-16 1.774e-01 0.000 1.000000
## feedback1:grade1 2.167e-01 1.024e-01 2.115 0.037885 *
## feedback2:grade1 5.000e-02 1.774e-01 0.282 0.778905
## wordtype1:feedback1:grade1 1.667e-01 7.244e-02 2.301 0.024296 *
## wordtype2:feedback1:grade1 -6.081e-16 1.255e-01 0.000 1.000000
## wordtype1:feedback2:grade1 -7.601e-17 1.255e-01 0.000 1.000000
## wordtype2:feedback2:grade1 -2.107e-16 2.173e-01 0.000 1.000000
## ---
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## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.374 on 72 degrees of freedom
## Multiple R-squared: 0.5336, Adjusted R-squared: 0.4235
## F-statistic: 4.846 on 17 and 72 DF, p-value: 9.884e-07

7.4.6.2 Using emmeans for 3 way interaction contrasts. emmeans is a very inefficient way of obtaining
higher order interaction contrasts. We cannot simply provide coefficient sets for each IV separately and have
emmeans combine them. We have to create the vectors “manually” using the methodoloty shown above for the
simple 2way interaction contrasts. The logic is that emmeans can only evaluate a contrast if the coefficients
are provided. (my approach was to create the “lincombs” objects).

We have established the contrasts for each IV above. They are. . . ..

first, for wordtype:
wc <- contrasts(bg.3way$wordtype)
wc

## [,1] [,2]
## LF_LE -1 1
## HF_LE -1 -1
## HF_HE 2 0

then for feedback:
fb <- contrasts(bg.3way$feedback)
fb

## [,1] [,2]
## None 2 0
## Positive -1 1
## Negative -1 -1

and then for grade:
gc <- contrasts(bg.3way$grade)
gc

## [,1]
## fifth 1
## twelfth -1

There are four interaction contrasts formed with the 3way product of the three sets of component vectors.
We can create them using the same matrix logic that we used above.

This is tricky because we have to make certain that the order of the coefficients matches what will be in the
grid of the emmeans output.
wc1byfb1 <- wc[,1]%*%t(fb[,1])
wc1byfb1 <- matrix(unlist(wc1byfb1), nrow=1)
wc1byfb1

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] -2 -2 4 1 1 -2 1 1 -2
wc1byfb1bygc <- t(wc1byfb1)%*%t(gc)
wc1byfb1bygc

## fifth twelfth
## [1,] -2 2
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## [2,] -2 2
## [3,] 4 -4
## [4,] 1 -1
## [5,] 1 -1
## [6,] -2 2
## [7,] 1 -1
## [8,] 1 -1
## [9,] -2 2

The emmeans grid is produced here in a way that keeps the order of cells parallel to the order that the
coefficient set describes.
wfg.emm <- emmeans(fit_base.afex,~wordtype:feedback:grade)
wfg.emm

## wordtype feedback grade emmean SE df lower.CL upper.CL
## LF_LE None fifth 8.4 0.615 72 7.17 9.63
## HF_LE None fifth 8.8 0.615 72 7.57 10.03
## HF_HE None fifth 8.0 0.615 72 6.77 9.23
## LF_LE Positive fifth 7.8 0.615 72 6.57 9.03
## HF_LE Positive fifth 8.0 0.615 72 6.77 9.23
## HF_HE Positive fifth 4.4 0.615 72 3.17 5.63
## LF_LE Negative fifth 8.0 0.615 72 6.77 9.23
## HF_LE Negative fifth 7.6 0.615 72 6.37 8.83
## HF_HE Negative fifth 3.8 0.615 72 2.57 5.03
## LF_LE None twelfth 8.4 0.615 72 7.17 9.63
## HF_LE None twelfth 8.8 0.615 72 7.57 10.03
## HF_HE None twelfth 7.8 0.615 72 6.57 9.03
## LF_LE Positive twelfth 8.0 0.615 72 6.77 9.23
## HF_LE Positive twelfth 8.2 0.615 72 6.97 9.43
## HF_HE Positive twelfth 7.4 0.615 72 6.17 8.63
## LF_LE Negative twelfth 8.4 0.615 72 7.17 9.63
## HF_LE Negative twelfth 8.0 0.615 72 6.77 9.23
## HF_HE Negative twelfth 7.0 0.615 72 5.77 8.23
##
## Confidence level used: 0.95

Notice that the t value for this first of four 3way interaction contrasts matches what was produced by
summary.lm
lincombs.3wayint <- contrast(wfg.emm,

list(intcontr1.3way=
c(-2,-2,4,1,1,-2,1,1,-2,2,2,-4,-1,-1,2,-1,-1,2)
))

test(lincombs.3wayint, adjust="none")

## contrast estimate SE df t.ratio p.value
## intcontr1.3way 12 5.22 72 2.301 0.0243

7.4.6.3 Conclusions on 3 way interaction contrasts. Obtaining the test of the 3way interaction
contrasts with emmeans is considerable work. This illustration only outlined the way to obtain one of the four
possible ones. This inefficiency is not desirable. It is simpler to use summary.lm. Neither approach produces
SS and F tests or effect sizes. I will continue to prefer SPSS MANOVA.
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7.5 alpha rate adjustments wtih contrasts.
Recall that each use of the emmeans::test function had the capability of p value adjustments using the
bonferroni/sidak/holm/fdr family of adjustments. Any of the sets of contrasts tested above might have
used that argument, especially if the orthogonal sets were not a priori. The exception would be in the
final contrast, the simple 2way interaction contrast where only one contrast was tested - thus nothing to be
adjusted. However, if the full orthogonal set of four interaction contrasts were employed, then the adjustment
might have made sense.

7.6 Pairwise follow up comparisons with emmeans

If a preference for follow up analyses chooses pairwise comparisons rather than contrasts, then emmeans
permits that approach.

Consider the set of simple main effects of wordtype at levels of grade that was examined above. The grid of
means is reproduced here as a reminder.
w.g.emm <- emmeans(fit_base.afex, "wordtype", by="grade")

## NOTE: Results may be misleading due to involvement in interactions
w.g.emm

## grade = fifth:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.07 0.355 72 7.36 8.77
## HF_LE 8.13 0.355 72 7.43 8.84
## HF_HE 5.40 0.355 72 4.69 6.11
##
## grade = twelfth:
## wordtype emmean SE df lower.CL upper.CL
## LF_LE 8.27 0.355 72 7.56 8.97
## HF_LE 8.33 0.355 72 7.63 9.04
## HF_HE 7.40 0.355 72 6.69 8.11
##
## Results are averaged over the levels of: feedback
## Confidence level used: 0.95

The plot of those marginal means in the wordtype by grade layout is also reproduced here for visual reference.
p6
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If we wanted to examine pairwise difference among the levels of wordtype, separately at levels of grade we
could use the pairs function. In its default format, this produces all three pairwise t-tests separately at each
level of grade (six tests in all) where all use the pooled within cell error term and its 72 df rather than the
error specific to the two cells involved.

Unsurprisingly the HF_HE group differs from the other two levels of wordtype in fifth graders but no
differences were found in 12th graders.
pairs(w.g.emm, adjust="none")

## grade = fifth:
## contrast estimate SE df t.ratio p.value
## LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.8947
## LF_LE - HF_HE 2.6667 0.502 72 5.314 <.0001
## HF_LE - HF_HE 2.7333 0.502 72 5.447 <.0001
##
## grade = twelfth:
## contrast estimate SE df t.ratio p.value
## LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.8947
## LF_LE - HF_HE 0.8667 0.502 72 1.727 0.0885
## HF_LE - HF_HE 0.9333 0.502 72 1.860 0.0670
##
## Results are averaged over the levels of: feedback

If these were explicitly post hoc pairwise comparisons, then it would be appropriate to do p value adjustments
for error rate inflation. One nice thing about the pairs.emmGrid function is its capability for a tukey
adjustment method in addition to the bonferroni/sidak/fdr family. Note that the adjustment is done within
families of pairwise comparisons - here that means adjusting for three tests at each level of grade separately,
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not for a total of six tests.
pairs(w.g.emm, adjust="tukey")

## grade = fifth:
## contrast estimate SE df t.ratio p.value
## LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.9903
## LF_LE - HF_HE 2.6667 0.502 72 5.314 <.0001
## HF_LE - HF_HE 2.7333 0.502 72 5.447 <.0001
##
## grade = twelfth:
## contrast estimate SE df t.ratio p.value
## LF_LE - HF_LE -0.0667 0.502 72 -0.133 0.9903
## LF_LE - HF_HE 0.8667 0.502 72 1.727 0.2022
## HF_LE - HF_HE 0.9333 0.502 72 1.860 0.1579
##
## Results are averaged over the levels of: feedback
## P value adjustment: tukey method for comparing a family of 3 estimates

8 AdditionalPost Hoc Tests
Tukey’s HSD is easily accomplished on an AOV fit via a function in the base stats package that is loaded
upon startup note that this compares all pairs of cell means. It would severely over correct for alpha inflation
since not all of the pairs of cell means are interesting comparisons (comparing applies and oranges in many
instances). I cannot recommend using this method for a factorial.

The only satisfactory solutions that I’ve seen for application of Post Hoc tests variously to marginal tables of
means collapsed from the full factorial table or for arrays of means in simple effect configurations are those
provided in the emmeans suite of tools. We saw the availability of the adjust argument in both the contrasts
approach and the pairwise comparison approach. Analogous methods may be found in the phia approach.

9 Reproducibility
Ver 1.2 April 17, 2023

• major revision of much language and sequencing of approach

• added major sections on follow up analyses with the emmeans and phia packages

Ver 1.1 March 31, 2021

• edited graph styles

Ver 1.0 Sep 9, 2020
sessionInfo()

## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
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## [3] LC_MONETARY=English_United States.utf8
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## [19] stringr_1.5.0 munsell_0.5.0 compiler_4.2.2
## [22] numDeriv_2016.8-1.1 xfun_0.36 pkgconfig_2.0.3
## [25] mnormt_2.1.1 lmerTest_3.1-3 htmltools_0.5.4
## [28] tidyselect_1.2.0 codetools_0.2-18 fansi_1.0.3
## [31] withr_2.5.0 dplyr_1.0.10 MASS_7.3-58.1
## [34] grid_4.2.2 nlme_3.1-161 xtable_1.8-4
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## [43] cli_3.6.0 stringi_1.7.12 farver_2.1.1
## [46] reshape2_1.4.4 generics_0.1.3 vctrs_0.5.1
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