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Preface

This document can be a standalone “how-to” document for R users. However, it is primarily
intended for students in the APSY510/511 statistics sequence at the University at Albany. It
is a fairly thorough treatment of graphical and inferential evaluation of one-factor designs. It
presumes prior background coverage of the ANOVA logic from standard textbooks such as
Howell or Maxwell, Delaney and Kelley (2017). The analyses are intended to parallel and
exhaust the methods already covered with SPSS, and to extend them to additional topics.

This book/monograph uses the bookdown package (Xie, 2018a) for R (R Core Team, 2018),
which was built on top of rmarkdown (Allaire et al., 2018) and knitr (Xie, 2015). RStudio
(RStudio Team, 2015) was used for all writing and R programming.
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1 Background and R Setup

The goal of this document is provision of a template for using R to evaluate data from a
1-factor design that is typically called a 1-way ANOVA problem. The completely randomized
design used for the initial illustration here is a 3-group design. These initial data come from
an exercise in the classic Hays textbook. Later chapters utilize other data sets that have more
treatment conditions.

The standard R axiom that there are always multiple ways of performing any task is never more
accurate than with the ANOVA models. Beginning with graphical depiction and extending to
standard NHST inferences, contrast analysis and post hoc tests, and evaluation of assumptions,
the document also includes some rudimentary Bayesian approaches to inference.

This document

• Is intended for use by APSY511 course at UAlbany, but can be more broadly used by
data analysts.

• Is a fairly full one-way anova exposition for a 3-group design and a second illustration
with a five group design.

• Implements graphical summaries, numerical descriptions.
• Approaches ANOVA as linear modeling and is supplemented with analytical contrasts,

and multiple comparison tests.
• Implements trend analysis for quantitative IV’s.
• Includes graphical and inferential evaluation of assumptions.
• Includes sections on Bayesian Inference, Robust methods, and Resampling Methods
• It includes a section on sample size planning with power analysis.

The document is constantly under development:

• Additional work on effect size computations,
• implementation of some newer multiple comparison methods
• additional work on robust and resampling methods

One of the primary goals is to reproduce all the work we have accomplished with the SPSS
REGRESSION, GLM, MANOVA and ONEWAY procedures (and then some).

Several R packages are required:
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#if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#BiocManager::install("Biobase", version = "3.8")

# load packages
library(afex)
library(asbio)
library(BayesFactor)
library(beeswarm)
library(car)
library(coin)
library(dunn.test)
library(effectsize)
library(emmeans)
library(ez)
library(DTK)
library(ggdist)
library(gghalves)
library(ggplot2)
library(ggrain)
library(ggthemes)
library(ggstatsplot)
library(granova)
library(gridExtra)
library(gt)
library(KScorrect)
library(knitr)
library(lattice)
library(lawstat)
library(lmboot)
library(lmPerm)
library(lsr)
library(multcomp)
library(multtest)
library(mutoss)
library(nortest)
library(outliers)
library(pgirmess)
library(plotrix)
library(plyr)
library(psych)
library(pwr)
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library(rcompanion)
library(Rmisc)
library(sciplot)
library(sdamr)
library(sjstats)
library(userfriendlyscience)
library(WRS2)
library(dplyr)

Package citations for packages loaded here (in the above order): afex (Singmann, Bolker, West-
fall, & Aust, 2018), asbio (Aho, 2019), BayesFactor (Morey & Rouder, 2018), beeswarm
(Eklund, 2016), car (Fox, Weisberg, & Price, 2018), coin (Hothorn, Hornik, van de Wiel,
Winell, & Zeileis, 2017), effectsize (Ben-Shachar, Makowski, & Lüdecke, 2021), emmeans
(Lenth, 2019), ez (Lawrence, 2016), DTK (Lau, 2013), dunn.test (Dinno, 2017), ggdist
(Kay, 2024), ggplot2 (Tiedemann, 2022), ggplot2 (Wickham et al., 2018), ggrain (Judd,
van Langen, & Kievit, 2024), ggthemes (Arnold, 2018), ggstatsplot (Patil, 2021), granova
(Pruzek & Helmreich, 2014), gridExtra (Auguie, 2017), gt (Iannone, Cheng, & Schloerke,
2019), KScorrect (Novack-Gottshall & Wang, 2018), knitr (Xie, 2018b), lattice (Sarkar,
2018) lawstat (Gastwirth et al., 2017), lmPerm (Wheeler & Torchiano, 2016), lsr (Navarro,
2015) multcomp (Hothorn, Bretz, & Westfall, 2017), multtest (Pollard, Gilbert, Ge, Tay-
lor, & Dudoit, 2018), mutoss (Team et al., 2017), nortest (Gross & Ligges, 2015), outliers
(Komsta, 2011), pgirmess (Giraudoux, 2018), plotrix (Lemon et al., 2018), plyr (Wick-
ham, 2016), psych (Revelle, 2019), pwr (Champely, 2018), rcompanion (Mangiafico, 2019),
Rmisc (Hope, 2013,) sciplot (Morales, R Development Core Team, R-help listserv commu-
nity, & Duncan Murdoch., 2017), sdamr (Speekenbrink, 2022), sjstats (Lüdecke, 2019), user-
friendlyscience (Peters, 2017), WRS2 (Mair & Wilcox, 2018), dplyr (Wickham, François,
Henry, & Müller, 2019)

1.1 A note on R version and package installations.

R packages are undergoing constant revision and some code here may be deprecated or slightly
modified in more recent versions of some packages. RStudio makes it simple to update versions
of packages. Users can always install the most recent versions (or archived versions if they are
no longer maintained on CRAN) of R packages with source files rather than binaries, when
they are available. The general process is to download the appropriate source files from the
repository (ending in “tar.gz”). Then use this function to install the package:

#install.packages(file.choose(), repos=NULL, type="source")

Note that Windows users will need to install the Rtools suite of tools before source package
installation is attempted.
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https://cran.r-project.org/bin/windows/Rtools/

Rstudio may permit direct installation from source.

Two packages that are required for permutation tests and bootstrapping, lmPerm and lm-
boot, may be arcived from CRAN can be obtained by searching CRAN (search the package
name).

Three packages come from the BioConductor suite of r packages and the core BioConductor
installer should also be installed.
https://www.bioconductor.org/

Search for pages of each of these four to download and install the latest package source files.
But by the time you read this the normal process of installing the binary files may work (see
the BiocManager page)

BiocManager

Biobase

BioGenerics

multtest

1.2 Resources

The following list will provide a good start for those needing a broader background in ANOVA
techniques and more detailed sources for the primary packages employed in this document.

• Salvatore S. Mangiafico’s R Companion: [https://rcompanion.org/rcompanion/d_05.html]
• Martin Schweinberger’s Blog: [http://www.martinschweinberger.de/blog/one-way-

anova/]
• cwoods on RPub: [https://rpubs.com/cwoods/anova]
• Daniel Wollschläger’s R Examples Repository [http://dwoll.de/rexrepos/posts/anovaCRp.html]

1.3 A note on R coding style

In this document, a great many functions from a great many packages are used. Sometimes
packages use the same name for a function that is uses in another package. In order to reduce
ambiguity I have attempted to be consistent in a way of calling functions in the code.

Normally, if a package is loaded, we can write code that just calls the function. For example,
here is how one can call the describe function to analyze an object/dataframe/variable:
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describe(variablename)

But a describe function exists in multiple packages. Readers would not necessarily know
which package the describe function employed here came from unless the text or a comment
in the code chunk identified it. It turns out that the last package loaded with that function
in it would gain priority.

So, in order to add clarity, I have tried to use the pkgname::functionname convention. Pre-
ceding the function name with the package name and the double colon, executes the function
from that package. This is effective even if the package has not previously been loaded with
the library function. For example:

psych::describe(variable_name)

The exception is when a function is found in base R packages, but not add-ons. In that case
I don’t use the :: approach.
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2 Prepare the data and do Exploratory Data
Analysis

The data set used in the first several chapters here comes from an experiment described in
the textbook by Hays (1994), section 10.16, pg 399. The study examined whether asyn-
chronous presentation of video and audio recordings of speakers impaired memory of what
was viewed/heard. It is a one-factor design, 3 levels. In the synchronous condition (control)
audio and visual recordings were synchronized. In the two asynchronous conditions the audio
was slightly ahead of the visual image of the speaker’s lips (fast) or slightly behind the visual
image (slow). This independent variable is called “factora” in the data set. The dependent
variable (called dv in the data set) is number of words recalled from a list of 50 heard by the
participant from the presentation of the recording.

2.1 Import and prepare the data set

The data set is found in a .csv file and has equal sample sizes of ten per group. It is thus a
“balanced” design, and a “completely randomized” design.

hays <- read.csv("data/hays1.csv",header=TRUE, stringsAsFactors = T)
# better yet, implement the file.choose function so that
# you don't have to change the default folder
# hays <- read.csv(file.choose(),header=TRUE, stringsAsFactors=T)
# note that the initial data frame sees the dv as
# integer rather than numeric, so....
hays$dv <- as.numeric(hays$dv)
# show the structure of the data frame
str(hays)

'data.frame': 30 obs. of 2 variables:
$ factora: Factor w/ 3 levels "control","fast",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dv : num 27 28 33 19 25 29 36 30 26 21 ...
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#hays
# I will use the attach function here to simplify our code even though
# current best practices in R recommend against using it.
# The downside of using attach is not encountered in this illustration
attach(hays)

2.2 Numerical Summaries

Basic description of the DV as a function of factora is accomplished the the ‘describeBy’
function from psych.

psych::describeBy(dv, group=factora, type=2)

Descriptive statistics by group
group: control

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 10 27.4 5.1 27.5 27.38 3.71 19 36 17 -0.04 -0.09 1.61
------------------------------------------------------------
group: fast

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 10 21.2 5.2 20.5 20.88 4.45 15 30 15 0.66 -0.65 1.65
------------------------------------------------------------
group: slow

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 10 21.8 2.53 22.5 22 2.22 17 25 8 -0.7 -0.29 0.8

2.3 Graphs of Data by Group

There are a great many ways to draw graphs to display data of the type found even in this
simple 3-group design. R can produce them with varying degrees of complexity in the code.
Several will be demonstrated here. Some of them are quick tactics to “get to know” your data.
Others can be seen as close to publication quality.

2.3.1 Simple EDA Plots

First, we can quickly obtain a simple and very basic plot called a stripchart.
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stripchart(dv~factora, method="stack")
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An alternative to the base system stripchart shown above is a simple dot plot. Although there
are many ways to accomplish this in R, the dotplot function from the lattice package is
simple to use.

# require(lattice)
with(hays, lattice::dotplot(dv ~ factora))
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It is always useful to obtain boxplots of the DV for the all groups in a 1-way design. With base
system graphics it is possible to display data from multiple conditions on the same plot.

boxplot(dv~factora, data=hays,col="lightgray",ylim=c(0,40),
main="1-Way treatment study Box Plot Illustration",
xlab="Treatment Group",
ylab="Mean Words Recalled")
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What if we want to truncate the axis and show an axis break? (can’t do in ‘ggplot2’)? Let’s do
it for this boxplot. The axis.break function from the plotrix package accomplishes this.

#library(plotrix) # to obtain the axis.break function
boxplot(dv~factora, data=hays,col="lightgray",ylim=c(8,40),

main="1-Way treatment study Box Plot Illustration",
xlab="Treatment Group",
ylab="Mean Words Recalled - note axis truncation")

plotrix::axis.break(2,8,style="slash")
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One of Tufte’s axioms is “show the data.” Here, using the beeswarm package, we can draw
a box plot with raw data points overlaid. Note that the beeswarm function could have been
executed after either of the boxplot graphs drawn above as well. Here it produces the sim-
plest/rudimentary boxplot.

boxplot(dv~factora)
beeswarm::beeswarm(dv~factora,add=T)
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2.3.2 Frequency Histograms

In many situations it is helpful to visualize each group’s DV distribution with a frequency
histogram. The data set used in this document has small sample size per group, so the
frequency histogram is not likely to be useful beyond what can be seen with the simpler
stripchart above. Nonetheless, it is useful to put code in place as a template for use in
situations where sample size is larger. The approach taken here uses ‘ggplot2’ to create a plot
that employs “small multiples”, where different panels are drawn for each group. It is also
possible to create a layout of histograms with the ‘layout’ function for base system graphics,
and that approach has already been demonstrated in prior R tutorials.

Here, I kept the ggplot fairly simple so as to be useful for quick EDA.

library(ggplot2)
# first, the core xy plot specs
hbase <- ggplot2::ggplot(hays, aes(x = dv))
# now the base plot
hbase1 <- hbase + geom_histogram(aes(y=..density..), # change y axis to density

bins=8, colour="black", fill="white") +
geom_density()
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# now add the specification that creates separate panels for eaach group
hbase2 <- hbase1 + facet_grid(factora ~ .)
hbase2

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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2.3.3 Bar Graphs with Error Bars

The applied sciences rely heavily on a type of bar plots of means, with std errors (or CI’s, or
SD’s) displayed as “whiskers”. There is a bit of cottage industry on the web that is heavily
critical of these types of graphs, focusing on the fact that information is lost when the data
are presented this way. Just do a google search on “dynamite plots” and you will find many
blog posts and textbook sections that argue for doing away with them.

Perhaps this is why they are not always simple to obtain in R. Judicious use of them as
summary graphs for “ANOVA” types of analyses strikes me as OK. But if one finds that the
data have issues of skewness, outliers, or heteroscedasticity, then “showing the raw data points”
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might be a better approach (c.f. Tufte) - adding raw data onto the bar graph as outlined in
the “scientific graphing practices” part of the course.

Notwithstanding this criticism, I have generated some examples of how to draw these graphs
in R. I still feel that commercial graphing software such as SigmaPlot or Origins would be a
better choice for publication quality graphs of these types.

In the ‘psych’ package, the error.bars.by function gives

• a good plot with 95% CI errors as the default.

• Other % CI’s can be specified - read the help file: ?error.bars.by

• colors of the bars are chosen simply to illustrate the capability.

Use of varying colors would probably not a good choice for either presentation or publication
- refer to the BCD discussions of scientific graphing practices.

psych::error.bars.by(hays$dv,hays$factora,bars=TRUE, ylim=c(0,35),
main="1-Way treatment study \n Means +/- 95%CI",
xlab="Treatment Group",
ylab="Mean Words Recalled",
labels=c("control","fast","slow"),
#colors=c("lemonchiffon","forestgreen", "springgreen4"))
colors=c("lightgray","lightgray", "lightgray"))
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I found, in the asbio package, a function to generate bar graphs +/- either std errors or CI’s.
Here is a graph with means +/- std errors.

#require(asbio)
asbio::bplot(dv,factora,int="SE",

xlab="Treatment Group", ylab="Mean Number of Words",
print.summary=F)
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Perhaps a nicer way is available from the from ‘sciplot’ package. default gives +/- 1 std
error:

#require(sciplot)
#win.graph() # or quartz() or x11()
sciplot::bargraph.CI(factora,dv,lc=TRUE, uc=TRUE,legend=T,

cex.leg=1,bty="n",col="gray75",
ylim=c(0,33),
ylab="Mean DV Score",main="Base 1-Way Design Illustration",
cex.names=1.25,cex.lab=1.25)

box()
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#axis(4,labels=F)

Next, we can put an axis break on the Y axis to give a visual indicator of the scale break.

# use the axis.break function from plotrix to give the slashes
library(plotrix)
#win.graph() # or quartz() or x11()
sciplot::bargraph.CI(factora,dv,lc=TRUE, uc=TRUE,legend=T,

cex.leg=1,bty="n",col="gray75",
ylim=c(6,33),
ylab="MEAN DV Score",main="Base 1-Way Design Illustration",
cex.names=1.25,cex.lab=1.25)

box()
#axis.break(4,7,style="slash")
plotrix::axis.break(2,7,style="slash")
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2.3.4 GGPLOT2 can draw boxplots or bar graphs with error bars

The ggplot2 package is a go-to package for visualizations in the data science universe. It
is broadly capable and has a different style of programming than base system graphics. It
builds on a “grammar of graphics” philosophy, coming from Wilkinson, that is well aligned
with object oriented programming. In separate tutorials, basics of ggplot2 programming are
taught.

Initally, we will build a boxplot and then a series of bar graphs. Many of the stylistic attributes
of a ggplot graph are controlled by the “theme” function. A later section reviews a few
alternatives, but for this graph, I prefer a minimal suite of style attributes. This is also a
non-standard boxplot in that I added an indicator of the mean of each group since boxplots
traditionally only display the median. The blue point indicates the mean. By traditional
boxplot definitions, we see no outliers - remembering the relatively small sample sizes, this is
not surprising.

pbox <- ggplot2::ggplot(hays, aes(x=factora, y=dv)) +
geom_boxplot() +
stat_summary(fun = mean, geom = "point",

shape = 16, size = 3.5, color = "blue") +
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xlab("Treatment Group") +
ylab("Number of Words") +
ggtitle(" Boxplot of Number of Recalled Words\n Means are added with blue point") +
theme_minimal() + theme(text=element_text(size=12))

pbox
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With the traditional bar graph for displaying group means, a decision has to be made about
inclusion of error bars. The primary tradition is display of +/- one standard error of the mean,
but this prompts some thought about just what the purpose of error bars on a graph is this
type is. Some discussion of that takes place in the scientific graphing practices section of the
course and a literature is found in the toolkit bibliography as well.

If we are going to plot means and add error bars, the approach requires some preliminary work
to establish the means, std errors, sd’s, and CI’s to be used. By default the CI is a 95% range
but the value can be changed.

• The summarySE function from Rmisc produces a data frame that has the summary
stats by group.

• ggplot cannot work directly on the data frame to produce this type of plot. We need the
summary statistics first.
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# now use summarySE on our data
hays_summ <- Rmisc::summarySE(hays, measurevar="dv", groupvars="factora",conf.interval=.95)
str(hays_summ)

'data.frame': 3 obs. of 6 variables:
$ factora: Factor w/ 3 levels "control","fast",..: 1 2 3
$ N : num 10 10 10
$ dv : num 27.4 21.2 21.8
$ sd : num 5.1 5.2 2.53
$ se : num 1.61 1.65 0.8
$ ci : num 3.65 3.72 1.81

# rename the column that contains the mean to something more less confusing
colnames(hays_summ) <- c("factora", "N", "mean", "sd", "sem", "CI" )
# look at the product
knitr::kable(hays_summ)

factora N mean sd sem CI
control 10 27.4 5.103376 1.613829 3.650735
fast 10 21.2 5.202564 1.645195 3.721690
slow 10 21.8 2.529822 0.800000 1.809726

Initially, one should consider displaying the raw data points. This is the best way of having
a sense of the dispersion of the DV within each group and follows Tufte’s axiom: “Show the
Data”. The first code chunk defines the base bar graph and the succeeding one adds on another
layer that contains the data points. Note that I changed the theme to one that removes the
grid background found above in the boxplot.

p1 <- ggplot2::ggplot(hays_summ, aes(x=as.factor(factora), y=mean)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray", width=.5) +
xlab("Treatment Group") +
ylab("Mean Number of Words") +
theme_classic() + theme(text=element_text(size=12))

#p1

p2 <- p1 + geom_point(data=hays, aes(x=factora, y=dv))+
ggtitle("The Effect of Visual and Auditory\n Stimulus Synchrony on Performance\n Means plus raw data points")

p2

25



0

10

20

30

control fast slow
Treatment Group

M
ea

n 
N

um
be

r 
of

 W
or

ds
The Effect of Visual and Auditory
 Stimulus Synchrony on Performance
 Means plus raw data points

Next, the same base plot is used for the bars, but standard errors of the mean are added, +/-
one standard error.

# add on std error bars
#win.graph() # or quartz() or x11()
p3 <- p1 + geom_errorbar(aes(ymin=mean-sem, ymax=mean+sem),

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle(" The Effect of Visual and Auditory\n Stimulus Synchrony on Performance\n Means +/- SEM")

p3
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A more finished ggplot2 graph might look like this:

p3base <- ggplot2::ggplot(hays_summ, aes(x = factora, y = mean)) +
geom_bar(

position = position_dodge(),
stat = "identity",
fill = "gray",
colour = "black",
width=.5

) +
geom_errorbar(aes(ymin = mean - sem, ymax = mean + sem),

width = .2,
# Width of the error bars
position = position_dodge(.9)) +

scale_y_continuous(breaks = 0:30 * 5) +
xlab("Treatment Group") +
ylab("Mean Number of Words") +
ggtitle("The Effect of Visual and Auditory\n Stimulus Synchrony on Performance\n Means +/- SEM")

p3base + theme_bw()
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The reader might have noticed a call in this last ‘ggplot2’ graph called theme_bw(). ‘ggplot2’
can handle many different themes available in add-on packages. I use one called ggthemes.

Many other themes are available from the ggthemes package. see [https://cran.r-
project.org/web/packages/ggthemes/vignettes/ggthemes.html]

The reader might try any one of the following:

p3base + theme_tufte()
p3base + theme_grey()
p3base + theme_dark()
p3base + theme_economist()
p3base + theme_excel() # very ugly
p3base + theme_few() # from Stephen Few
p3base + theme_fivethirtyeight()
p3base + theme_gdocs()
p3base + theme_hc()
p3base + theme_solarized()
p3base + theme_stata()
p3base + theme_wsj()
p3base + theme_pander()
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Sometimes, error bars are chosen to summarize the dispersion of the DV rather than as a noise
estimator of the sample mean. One option (in addition to showing the raw data) is to use
standard deviations from each group to form the error bars. The error bars extend up and
down one standard deviation.

# add on std error bars
p4 <- p1 + geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd),

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle(" The Effect of Visual and Auditory\n Stimulus Synchrony on Performance\n Means +/- SD")
p4
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A recommended approach is to show Confidence Intervals rather than SEM’s (see the toolkit
bibliography section on confidence intervals). This is easy enough to accomplish since the
summarySE function also computed the half width of a confidence interval so that it can be
used in plotting the “error bars”.

p5 <- p1 + geom_errorbar(aes(ymin=mean-CI, ymax=mean+CI),
width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle(" The Effect of Visual and Auditory\n Stimulus Synchrony on Performance\n Means plus 95%CI")
p5
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2.3.5 Miscl: Dotplots, Violin plots

One useful plot that we have seen before combines the violinplot (showing kernel density
curves) with either a boxplot or, in this case, a dotplot. The violinplot is best used when
sample sizes are a bit larger than the n=10 in this hays data set. Nonetheless, the capability
is illustrated. This figure is generated using ggplot2 techniques.

ggplot2::ggplot(hays, aes(factora, dv)) +
geom_violin() + geom_dotplot(binaxis='y', stackdir='center', dotsize=.5) +
theme_classic()
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2.3.6 Raincloud Plots

I have become fond of a newer style of graph called a Rain Cloud Plot. It provides multiple
views of the data, including a display of the raw data points. There are several ways to obtain
Rain Cloud Plots and more are being developed all the time. The ones I prefer use ggplot2
and a few addons to the ggplot ecosystem. Typically they combine dotplots of raw data with
boxplots and kernel density displays. Like many of the EDA techniques in this chapter, the
small sample size of this textbook data set makes these plots with density functions less than
highly useful.

The first is a simple set of code that uses ggplot add-ons from the ggdist and gghalves
packages. I left it as black and white and shades of grey to make it nearly publication ready.
I added the theme control for stylistic purposes.

ggplot2::ggplot(hays, aes(factora, dv)) +
ggdist::stat_halfeye(adjust = .5, width = .3, .width = 0, justification = -.3, point_colour = NA) +
geom_boxplot(width = .1, outlier.shape = NA) +
gghalves::geom_half_point(side = "l", range_scale = .4, alpha = .5) +
theme_classic()+
theme(text=element_text(size=14), #change font size of all text
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axis.text=element_text(size=14), #change font size of axis text
axis.title=element_text(size=14), #change font size of axis titles
plot.title=element_text(size=14), #change font size of plot title
legend.text=element_text(size=14), #change font size of legend text
legend.title=element_text(size=14)) #change font size of legend title
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Another approach involves uses a geom from the ggrain package. The horizontal layout may
be preferred and this is the origin of the “raincloud” lable where the data points appear to fall
from the raincloud (density function). A relatively non-offensive color scheme is chosen.

ggplot2::ggplot(hays, aes(factora, dv, fill = factora)) +
ggrain::geom_rain(alpha = .5,

boxplot.args.pos = list(
width = 0.05, position = position_nudge(x = 0.13)),

violin.args.pos = list(
side = "r",
width = 0.7, position = position_nudge(x = 0.2))) +

theme_classic() +
scale_fill_brewer(palette = 'Dark2') +
guides(fill = 'none', color = 'none') +
coord_flip()
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Another is that I like is from the sadmr package. It also combines a boxplot, a kernel density
plot and a jittered stripchart of the raw data.

sdamr::plot_raincloud(hays, y=dv, groups=factora) + ggplot2::scale_fill_manual(values=c("honeydew2", "lemonchiffon2", "gray78")) +
ggplot2::scale_color_manual(values=c("black", "black", "black"))
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2.3.7 Combining multiple ggplot figures into one layout

The next plot is an illustration of combining multiple graphs into one layout. First, we will
use the hays data set, for continuity. But it is not very useful to draw histograms or kernel
density functions with such a low sample size, so a second illustration uses the “cereals” data
set.

# Modeled after https://dmyee.files.wordpress.com/2016/03/advancedggplot.pdf
#Histogram of DV, by treatment condition
p1<-ggplot2::ggplot(data = hays, aes(x = dv, fill=factora)) +
geom_histogram(binwidth = .1) +
scale_colour_grey() + scale_fill_grey() +
xlab("Mean Number of Words") + ylab("Count") +
ggtitle("Histograms, by treatment group") +
theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Boxplots of DV, by treatment condition
p2<-ggplot2::ggplot(data = hays, aes(x = factora, y = dv, fill=factora)) +
geom_boxplot() +xlab("Treatment Group") + ylab("Number of Words") +
scale_colour_grey() + scale_fill_grey() +
ggtitle("Boxplots of DV by Treatment Group") +
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theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Violin plots of DV, by treatment condition
p3<-ggplot2::ggplot(data = hays, aes(x = factora, y = dv, fill=factora)) +
geom_violin(alpha=.25, color="gray") +
geom_jitter(alpha=.5, aes(color=factora), position=position_jitter(width=0.3)) +
scale_colour_grey() + scale_fill_grey() +
coord_flip() +
xlab("Treatment Group") + ylab("Number of Words") +
ggtitle("Violin plots of DV by Treatment Group") +
theme_minimal() +theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Creating a matrix that defines the layout
# (not all graphs need to take up the same space)
lay <- rbind(c(1,2),c(3,3))# Plotting the plots on a grid
gridExtra::grid.arrange(p1, p2, p3, ncol=2, layout_matrix=lay)
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The second illustration uses the “cereals” data set that has been explored for previous course
work with SPSS. Here, I chose the dependent variable to be the “Healthiness” rating of each
cereal type and the categorical/grouping factor is shelf that the cereal was found on in the
supermarket. This second illustration also introduces a way to control color for “fills”, by
group, and uses a colorblind friendly palette of colors.
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cereals <- read.csv("data/cereal_cold_sugar_shelf.csv", stringsAsFactors=T)

# Modeled after https://dmyee.files.wordpress.com/2016/03/advancedggplot.pdf
#Histograms of "Healthiness" Rating" by Shelf
#library("RColorBrewer")
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73",

"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
p1<-ggplot2::ggplot(data = cereals, aes(x = rating, fill=shelf)) +
geom_histogram(binwidth = .1) +
scale_fill_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +
#scale_colour_grey() + scale_fill_grey() +
xlab("Rating") + ylab("Count") +
ggtitle("Histograms, by Shelf") +
theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Boxplots of "Healthiness" Rating" by Shelf
p2<-ggplot(data = cereals, aes(x = shelf, y = rating, fill=shelf)) +
geom_boxplot() +xlab("Shelf") + ylab("Rating") +
scale_fill_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +
#scale_colour_grey() + scale_fill_grey() +
ggtitle("Boxplots of Rating by Shelf") +
theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Violin plots of "Healthiness" Rating" by Shelf
p3<-ggplot2::ggplot(data = cereals, aes(x = shelf, y = rating, fill=shelf)) +
geom_violin(alpha=.25, color="gray") +
geom_jitter(alpha=.5, aes(color=shelf), position=position_jitter(width=0.3)) +
scale_fill_manual(values=cbPalette) + scale_colour_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +

#scale_colour_grey() + scale_fill_grey() +
coord_flip() +
xlab("Shelf") + ylab("Rating") +
ggtitle("Violin plots of Rating by Shelf") +
theme_minimal() +theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Creating a matrix that defines the layout
# (not all graphs need to take up the same space)
lay <- rbind(c(1,2),c(3,3))# Plotting the plots on a grid
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gridExtra::grid.arrange(p1, p2, p3, ncol=2, layout_matrix=lay)
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2.3.8 A Caution about Error Bars and Confidence Intervals for Visualizing
Inference

There is a common myth that in group comparison studies such as this that non-overlap of 95%
CIs between a pair of groups indicates significance with a traditional two-sample test and that
overlap indicates non-significance. The reality is different and a discussion of this is found in
other course materials and R tutorials. While the former may be true in most circumstances,
the latter is not when using a per comparison alpha of .05.

The issue raises the important point of just what the goal of data display is. If to provide an
indicator of dispersion, then raw data points or error bars representing standard deviations
might be preferred. If an indicator of sampling variation related to the mean is desired, then
error bars as SEM’s or CI’s would be preferred. If the goal is “inference by eye”, then some
modification of the CI strategy might be appropriate and that literature has been referred
to above. More sophisticated graphs can include information about inference as well. One
example of this is an easily produced plot from the ggbetweenstats function that is found
in the ggstatsplot package. This graph may be too cluttered to be suitable for publication,
but it is an example of how simple use of R functions can accomplish many things to facilitate
exploratory data analysis and rudimentary inference.
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set.seed(123)
p6 <- ggstatsplot::ggbetweenstats(
data = hays,
x = factora,
y = dv,
var.equal=T,
p.adjust.method="fdr",
#ggtheme="classical",
title = "Distribution of Words Recalled across Treatment Condition"

)
p6

µmean = 27.40

µmean = 21.20 µmean = 21.80

pFDR−adj. = 0.01
pFDR−adj. = 0.01
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3 Perform the standard parametric 1-way
ANOVA

The R user is faced with many choices of packages and functions to implement 1-way ANOVAs.
We will begin with a very simple and limited function oneway.test. The standard method
for doing ANOVA is to use the aov function from the base package, although lm can also be
used. They are the most common approaches for obtaining the traditional SS partitioning
and F test. We also do a bit more work with them to obtain analytical/orthogonal contrasts
here, as well Three other approaches are also outlined. ezanova, granova, and afex are all
designed to provide easier and/or additional strategies.

3.1 The oneway.test function

A very basic way to do a one factor ANOVA is with the oneway.test() function. The
“var.equal” argument, when set to TRUE yields the standard textbook analysis where the
error term (MSerror) is the pooled within-group variances and homogeneity of population
variances is assumed.

# the var.equal argument permits using the pooled within-group error
# as the F test error term.
oneway.test(dv~factora,var.equal=TRUE, data=hays)

One-way analysis of means

data: dv and factora
F = 5.8947, num df = 2, denom df = 27, p-value = 0.007513

Changing the var.equal argument is possible. This is desireable when the homogeneity of
variance assumption is violated. The logic and desireability of this form of the 1-way ANOVA
F test is parallel to the Welch test in the independent samples “t-test”. More on alternative
approaches when assumptions are violated is provided later in this document.

This Welch test is strongly recommended.
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# setting var.equal=F results in a generalization of the
# Welch (Fisher-Behrens) form of the test.
# see your textbook or see the help pages for oneway.test() for more information
# notice the fractional df for the denominator term
oneway.test(dv~factora,var.equal=FALSE, data=hays)

One-way analysis of means (not assuming equal variances)

data: dv and factora
F = 5.0716, num df = 2.000, denom df = 15.914, p-value = 0.01977

3.2 The aov and lm functions

The aov function in the base package is a “wrapper” for lm. It uses the ‘lm’ linear modeling
engine, but permits model specification in a similar way to how we have seen lm used for
regression. It expects IVs to be factors. The output with use of the summary function is the
more traditional ANOVA summary table with SS and df partitioning. The simplicity of its
usage is its strength. It’s output is, however, limited. We need to use other functions for
analytical/orthogonal/singleDF contrasts, multiple comparisons, etc. That follows below.

An extended CAVEAT BEFORE USING AOV:

Even though this script addresses only 1-way designs, there are some issues that are bigger,
once we get to factorial designs and that require care NOT to simply apply a generalization
of these 1-way approaches to factorials with unequal sample sizes per group. I’ll elaborate
on this a bit here, but in the 1-way situation this discussion is largely irrelevant except for
evaluation of individual contrasts and there is a later chapter in this document that addresses
the questions associated with them. The anova and summary functions applied to aov objects
produce Type I SS. When used in factorial designs, the aov and anova functions will not test
hypotheses about unweighted marginal means. The car package provides access to an Anova
function (upper case first letter A) that will produce Type III SS. Obtaining Type III SS
for contrasts is not completely direct. You will see that use of the summary function on the
aov model does produce Type I SS for the contrasts. I obtain tests of the contrasts with the
lm function by applying the summary function to the lm model or by use of the summary.lm
function on an aov object. This approach does provide a test of type III SS, but the SS are not
listed. See the later chapter on Unequal Sample Sizes for details on this topic. The emmeans
package is a strong alternative when working with contrasts - chapter 6 here.

There is a very large debate on the value of Type I, II vs III SS. In our class, we will address
that at a later point in time.
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Conclusion: The direct extension, to a factorial design, of the methods outlined here will
not always produce exact duplication of the SPSS/SAS methods we cover using TYPE III or
UNIQUE SS methods, in factorial designs with unequal N. Since the initial/primary example
in this document is balanced (equal N) and not a factorial, these issues are not relevant for this
initial Hays data set. The treatment of the Type I and III SS issues here set the stage for the
importance of that distinction in factorial designs where marginal means such as main effects
might be either weighted or unweighted. We will better be able to grasp the issues there with
the foundation put in place here and in the preceding tutorial on linear modeling in R

The “R ecosystem” is not terribly well oriented to the experimental design perspective, as it has
emerged in the Psychological Sciences. Duplication of the exact approaches we have learned
with SPSS/SAS can be done, but more complex designs such as factorial between-groups de-
signs and repeated measures present unique challenges for some of the straightforward methods
used in SPSS/SAS. This is especially the case for contrasts, simple effects, and repeated mea-
sures. This further work is enabled by a solid understanding for the applications of aov and
lm in one factor designs.

3.2.1 Using the aov function

Fortunately, obtaining the results from ‘aov’ is simpler than the preceding four paragraphs.
aov utilizes the lm functionality to perform its work. Notice that, like lm, the data frame
can be named as an argument precluding the need for attachment of the dataframe as we did
earlier in this document.

Note that the independent variable named in the model specification is expected to have a
class type of “factor”, which it does in this example (called factora here). This is because of
how the variable was specified as a string variable and imported as a factor by read.csv.

fit.1 <- aov(dv~factora,data=hays)
summary(fit.1)

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 233.9 116.93 5.895 0.00751 **
Residuals 27 535.6 19.84
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that this result from aov was produced by the summary function. We have previously
seen that applying summary on a lm regression object produces a coefficients table rather than
the SS partitioning and F test. This distinction arises because the ANOVA summary table
is the typical summary reported for ANOVAs. One way around this, if we want to see the
regression coefficients produced by the analysis is to use the summary.lm function on the aov
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object. We see presentation of two coding vectors, expected since there are three categories in
the “factora” IV. Later we consider which coding scheme is employed by default to produce
the vectors for which coefficients are found here.

summary.lm(fit.1)

Call:
aov(formula = dv ~ factora, data = hays)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.400 1.408 19.454 < 2e-16 ***
factorafast -6.200 1.992 -3.113 0.00435 **
factoraslow -5.600 1.992 -2.811 0.00907 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

The anova function can also be applied to the aov object and gives slightly different pieces of
information than did application of the summary function above (number of significant places
for F and p values).

anova(fit.1)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 233.87 116.933 5.8947 0.007513 **
Residuals 27 535.60 19.837
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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3.2.2 Using the lm function for an ANOVA

We can also obtain the same analysis using lm directly. Here, summary on the lm object gives
the expected coefficients table, but anova on that object gives an ANOVA summary table with
slightly different characteristics.

# use the linear models function (lm) to do the analysis
# from this, can you determine whether lm uses dummy or effect coding?
fit.2 <- lm(dv~factora, data=hays)
summary(fit.2)

Call:
lm(formula = dv ~ factora, data = hays)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.400 1.408 19.454 < 2e-16 ***
factorafast -6.200 1.992 -3.113 0.00435 **
factoraslow -5.600 1.992 -2.811 0.00907 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

anova(fit.2)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 233.87 116.933 5.8947 0.007513 **
Residuals 27 535.60 19.837
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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3.2.3 What is the default coding scheme for the factor?

If you couldn’t determine whether dummy (indicator/treatment) coding or effect coding was
used (based on regression coefficient values and the cell means as we have previously covered)
then the following code may help. Recall the earlier tutorial document where we examined
how to control/change contrast choices and that lm uses dummy coding by default and calls
it contr.treatment. Note which category is the reference.

contrasts(hays$factora)

fast slow
control 0 0
fast 1 0
slow 0 1

3.3 Analytical and orthogonal contrasts for one factor ANOVA
models

If we want to employ our own contrasts we can create them and reassign those to factora. The
goal is to create an orthogonal set. It is possible to request the helmert set directly, but notice
that it gives what we have called “reverse helmert” and not the set that we want to use based
on our prior work with this data set.

contrasts(hays$factora) <- "contr.helmert"
contrasts(hays$factora)

[,1] [,2]
control -1 -1
fast 1 -1
slow 0 2

There is not a method for automatically rearranging the pattern for the built-in helmert
set so we need to create our own vectors. This will be the preferred, and more generalizeable,
approach that we can use in many different designs, and with many different kinds of orthogonal
sets. This method was reviewed in the earlier tutorial on coding vectors in R.
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# now apply orthogonal contrasts of our choosing.
contrasts.factora <- cbind(ac1=c(2,-1,-1),ac2=c(0,1,-1))
# or
# contrasts.factora <- matrix(c(2,-1,-1, 0,1,-1),ncol=2)
contrasts(hays$factora) <- contrasts.factora
contrasts(hays$factora)

ac1 ac2
control 2 0
fast -1 1
slow -1 -1

The first method for requesting analysis of these contrasts employs the ‘split’ argument in
the ‘summary’ function. I find it to be somewhat cumbersome, especially for factorial designs.
Nonetheless, it works well, and the summary table is easily readable. Note that this “split”
approach yields F tests that are based on Type I SS. See the unequal sample size chapter below
for detailed discussion. In this current data set with equal N, there is no distinction between
Type I and Type III SS.

fit.3 <- aov(dv~factora, data=hays)
summary(fit.3,

split=list(factora=list(contr1=1, contr2=2)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 233.9 116.93 5.895 0.00751 **
factora: contr1 1 232.1 232.07 11.699 0.00200 **
factora: contr2 1 1.8 1.80 0.091 0.76555

Residuals 27 535.6 19.84
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary table from the lm model object produces t-tests rather than F-tests and SS
listings. However, those t’s are the square roots of the F’s just seen, so both approaches yield
the same outcome. But this is only true when sample sizes are equal. If they are unequal, the
summary table from the lm model fit produces tests based on an equivalence to Type III SS.

fit.3lm <- lm(dv~factora, data=hays)
summary(fit.3lm)
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Call:
lm(formula = dv ~ factora, data = hays)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4667 0.8132 28.858 <2e-16 ***
factoraac1 1.9667 0.5750 3.420 0.002 **
factoraac2 -0.3000 0.9959 -0.301 0.766
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

If we apply this split approach to the lm object, an identical table of results is produced,
as expected. This request is the method for obtaining the parameter estimates. Note the
equivalence to what we found using the “manual” regression procedure in SPSS. It is also
equivalent to the first summary table seen just above for the fit.3lm model object.

fit.4 <- lm(dv~factora, data=hays)
summary(fit.4,

split=list(factora=list(contr1=1, contr2=2)))

Call:
lm(formula = dv ~ factora, data = hays)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4667 0.8132 28.858 <2e-16 ***
factoraac1 1.9667 0.5750 3.420 0.002 **
factoraac2 -0.3000 0.9959 -0.301 0.766
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

An alternative, and perhaps simpler, way to obtain the contrasts is to apply a version of the
summary function to an aov object. We saw above that simply applying summary to an aov
object produces tests of the contrasts, only when the split argument was used (code repeated
here).

summary(fit.3,
split=list(factora=list(contr1=1, contr2=2)))

However, since aov is a wrapper to lm we can use the summary function in a different way by
calling summary.lm. This will produce the same t-tests of the specified contrasts that we saw
above when summary was applied to an lm fit object. This is a good way to do analyses only
using aov, and the t-tests in the table are equivalent to those shown above when starting with
the lm object, and thus equivalent to Type III SS decompositions. For the oneway design,
these t’s are the square roots of the F tests for the contrasts produced when using the split
function on the aov object.

summary.lm(fit.3)

Call:
aov(formula = dv ~ factora, data = hays)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4667 0.8132 28.858 <2e-16 ***
factoraac1 1.9667 0.5750 3.420 0.002 **
factoraac2 -0.3000 0.9959 -0.301 0.766
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

The reader is urged to compare this table to the output from SPSS REGRESSION where we
first utilized this orthogonal contrast set with the hays data set.

3.3.1 Manually computing contrast SS for verification

To be thorough, and to connect these analyses to the basic formulaic concepts put in place in
initial lectures, let’s see if we can find a way to manually compute these contrast SS using some
matrix/vector manipulation in R. First we need to find the linear combination “psi” value -
only done here for the first vector, the 2 -1 -1 contrast.

# First lets obtain the group means and place them in a vector.
# We can do this two ways.
# a simple way is to use the 'aggregate' function
# which produces a data frame of the means
xbars <- aggregate(dv~factora, hays, mean)
xbars

factora dv
1 control 27.4
2 fast 21.2
3 slow 21.8

#str(xbars)
# a second way to extract the means by group is using 'dplyr',
# pipes, and a summarizing function.
# not run here
#@xbars <-
#hays %>%
# group_by(factora) %>%
# summarise (mean_dv = mean(dv))

# now extract the means from the dataframe and create a vector
v1 <- xbars$dv
v1

[1] 27.4 21.2 21.8
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#extract the first contrast from the contrasts matrix
v2 <- contrasts(hays$factora)[,1]
v2

control fast slow
2 -1 -1

# For our purposes it doesn't matter if these vectors
# are row or column vectors.
# we just need the dot product
# take the dot product of these vectors.
vectorprod <- v1%*%v2
vectorprod

[,1]
[1,] 11.8

Once we have this “psi” quantity, we can use our generic SS formula to compute SS. We have
seen this same 11.8 value in our earlier work with this data set, several times actually.

SS𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑛𝑗∗(Ψ)2

𝑘
∑

𝑗−1
𝑐2

𝑗

For our data set n=10 and the sum of the squared coefficients is 6. So,

SS_ac1 <- (10*(11.8**2))/6
SS_ac1

[1] 232.0667

This matches the SS for the first contrast produced with the ‘split’ function, as applied to the
aov fit.3 object above.

3.3.2 The Bonferroni family and other alpha-inflation control methods for
analytical contrasts

If we need to control of post hoc error rate inflation with the tests of these contrasts, R has
a useful function called p.adjust. The types of adjustments are in the ‘bonferroni-sidak’
style of control. p.adjust permits choice of a large number of methods. Output
from only one of them is shown here, but the logic for changing to the others
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is obvious from the commented code. The reader should look at thep.adjust‘ help
page.

For our orthogonal set, any of the methods listed here are appropriate. However, since there
are only two contrasts, we don’t find any difference among alternatives to bonferroni, which is
arguably too conservative. Holm or fdr may be preferred.

So, the laying out of the different approaches can serve as a template for designs where you
might have more than two contrasts. Note that I had to submit the p values for the each of
the contrasts examined in the preceding summary(fit.4) specification.

The result here is almost too trivial to need the software. With two tests, the bonferroni
adjust is just to double the observed p-value. And since only the first was significant above
at the nominal alpha level of .05 it is the only one we really had to adjust and we could have
multiplied it by two in our heads. Nonetheless, this puts in place a template for usage in more
complex situation.

Understand that the logic is to submit p-values of ALL followup tests so that the number of
tests can be determined by ‘p.adjust’ in its computation.

With the Bonferroni adjustment, our first contrast remains significant since .004 < .05.

Later in this document several other multiple comparison and post hoc methods are re-
viewed.

# now do a bonferroni adjustment on the p values from these two contrasts.
# we can use the p.adjust function for this. it has many other
# options for modified bonferroni adjustments - read the help: ?p.adjust
p.adjust(c(.00200,.07655), method="bonf")
# p.adjust(c(.00200,.07655), method="holm")
# p.adjust(c(.00200,.07655), method="hoch")
# p.adjust(c(.00200,.07655), method="hommel")
# p.adjust(c(.00200,.07655), method="BH")
# p.adjust(c(.00200,.07655), method="BY")
# p.adjust(c(.00200,.07655), method="fdr")

[1] 0.0040 0.1531

3.4 A note about testing analytical contrasts in R

While the above method using the ‘split’ function is workable for the 1-factor ANOVA model,
it can become quite challenging to extend its usage to complex designs with multiple factors,
and especially with repeated measures designs.
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The phia package will provide some capability for those broader needs.

The granova package has a function that permits use of contrasts, in a 1-way, and is exem-
plified below.

The most flexible approach is probably using the emmeans package. It’s usage for our 1-way
Hays design is found in its own chapter below and will be revisited with later designs.

3.5 Use of the ‘Anova’ function from the car package

Above, we discussed the fact that use of the base package ‘anova’ function on an ‘aov’ object
produced Type I SS. The issue of Type I vs Type III SS is not relevant for the current data set
since there is equal n in the groups. Nonetheless, it is useful to put in place an introduction
to the use of the ‘Anova’ function here and the specification required to obtain Type III SS.

An Anova argument called “type” permits request of the various “types” of SS. Once again,
we see that with equal N, the TYPE III SS equals the Type I SS (and F/p values) produced
by anova in various illustrations above.

car::Anova(fit.1,type="III")

Anova Table (Type III tests)

Response: dv
Sum Sq Df F value Pr(>F)

(Intercept) 7507.6 1 378.4638 < 2.2e-16 ***
factora 233.9 2 5.8947 0.007513 **
Residuals 535.6 27
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.6 Recommended approach for a basic 1-way ANOVA with
planned contrasts

Although this section has reviewed many options, the core initial approach to a 1-way ANOVA
can be fairly quick and direct with just a few steps:

1. Choose a set of planned contrasts and create the orthogonal set.
2. Perform the omnibus ANOVA with the aov function
3. Examine the omnibus F test and the single df contrast tests with either the “split”

capability or with summary.lm
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4. Follow up with post hoc tests, effect size computations, evaluation of assumptions and
possible alternative methods outlined in later chapters and/or the p.adjust methods
shown earlier in this chapter.

Here is the sequence (repeating the functions shown above):

First create the contrasts:

contrasts.factora <- matrix(c(2,-1,-1, 0,1,-1),ncol=2)
contrasts(hays$factora) <- contrasts.factora
contrasts(hays$factora)

[,1] [,2]
control 2 0
fast -1 1
slow -1 -1

Perform the base omnibus ANOVA and partition the factor into contrasts using “split”:

fit.3 <- aov(dv~factora, data=hays)
summary(fit.3,

split=list(factora=list(contr1=1, contr2=2)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 233.9 116.93 5.895 0.00751 **
factora: contr1 1 232.1 232.07 11.699 0.00200 **
factora: contr2 1 1.8 1.80 0.091 0.76555

Residuals 27 535.6 19.84
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or, obtain inferences on the contrasts by using summary.lm. This will produce “t-tests” of the
coding vectors, but in an equal-N situation the squares of the t’s will equal the F’s. With
unequal N’s the t-tests are tests equivalent to Type III SS (a more important issue in Factorial
designs than in 1-way designs)

summary.lm(fit.3)

Call:
aov(formula = dv ~ factora, data = hays)
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Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4667 0.8132 28.858 <2e-16 ***
factora1 1.9667 0.5750 3.420 0.002 **
factora2 -0.3000 0.9959 -0.301 0.766
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

In larger designs, we will come to prefer phia or emmeans for more general capabilities to
evaluate contrasts of many types as well as post hoc testing procedures.
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4 Alternatives to aov and lm for 1-way ANOVA

Several add-on packages provide alternate approaches to doing ANOVAs. Both ez and afex
are broadly capable and attempt to simplify some of the techniques to doing the various
components of analyzing different designs. A choice among them, vs using aov and/or lm is
largely a matter of style and preference but each adds components that may be desired. The
granova functions are useful for exploring some of the theoretical components of ANOVA,
using unique graphical approaches. They are probably most helpful as instructional tools, and
the 1-way design illustration here is an example of that.

4.1 The oneway function from the userfriendlyscience package

The userfriendlyscience package has a group of functions that are intended to ease the
transition of researchers from use of SPSS to R. It contains a flexible function named oneway
for implementation of 1-way ANOVA.

A potentially nice graph that shows data points and violin plots for each group can also be
provided, but unfortunately it creates a line graph. Corrections for heterogeneity of variance
are also provided.

The function has a capability of implementing the Levene test, but since it is the mean-
centered version, that argument is not included here. Arguments for returning means and other
descriptive statistics are present but not included here since, as of this writing, it produces an
error in how the psych::describeBy function is implemented.

In a later chapter, we will see how to obtain post hoc tests by using a “posthoc” argument.

oneway(y=hays$dv, x=hays$factora, plot=TRUE, corrections=TRUE)
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### Oneway Anova for y=dv and x=factora (groups: control, fast, slow)

Omega squared: 95% CI = [.03; .5], point estimate = .25
Eta Squared: 95% CI = [.06; .46], point estimate = .3

SS Df MS F p
Between groups (error + effect) 233.87 2 116.93 5.89 .008
Within groups (error only) 535.6 27 19.84

### Welch correction for nonhomogeneous variances:

F[2, 15.91] = 5.07, p = .02.

### Brown-Forsythe correction for nonhomogeneous variances:

F[2, 21.95] = 5.89, p = .009.

4.2 Using the granova package

The *granova package provides a unique approach to the oneway ANOVA design. It includes
a rather neat graph that summarizes the ANOVA components. BEWARE, the “contrast
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coefficients” are not the analytical contrast types of coefficients we have been working with.
Instead, we would call these treatment deviation contrasts - deviations of each cell mean from
the grand mean. These are thus the regression coefficient values that emerge from effect
coding.

The granova.1w function produces both a standard numeric output and a figure. The com-
ponents of the figure are described in class, but it is simple to find the grand mean, the cell
means and the data on the plot.

One caution about implementing granova.1w:

granova.1w can take either a data frame as the first argument, or the DV and IV variable
names as the first two arguments. If we were passing the data frame as the first argument, the
data frame must meet exact specifications. Only DV values can be included and the different
columns must be the different groups - equal sample sizes required. This is a bit of a clunky
method so we will use the second method. We execute the code by passing the DV and IV
names.

When the numerator and denominator MS for the F test are depicted as “squares”, it becomes
clear that the F ratio is the ratio of the area of MSbetween to MSwithin. The X axis is scaled as
the deviation quantity for each cell mean relative to the grand mean; therefore the X axis has
a mean of zero. Unfortunately for the color blind, the red triangles for cell means/deviations
and the green circle for the grand mean may not be distinguishable via color but the shapes
are distinct.

#require(granova)
kable(granova.1w(hays$dv, hays$factora,res=TRUE))
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x
Grandmean 23.47
df.bet 2.00
df.with 27.00
MS.bet 116.93
MS.with 19.84
F.stat 5.89
F.prob 0.01
SS.bet/SS.tot 0.30

Size Contrast Coef Wt’d Mean Mean Trim’d Mean Var. St. Dev.
fast 10 -2.27 21.2 21.2 20.33 27.07 5.20
slow 10 -1.67 21.8 21.8 22.17 6.40 2.53
control 10 3.93 27.4 27.4 27.50 26.04 5.10
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F−statistic =  5.89

Granova also permits use of predefined, a priori, contrasts of the style we have used so heavily,
with the granova.contr function. If we define the same orthogonal set used above (for fit.3
and fit.4), then the granova.contr function generates some nice plots along with the tests of
the contrasts, and a standardized effect size estimate for each contrast. Very Nice. BUT BE
CAREFUL……‘granova.contr’ needs to have equal N, and a data frame sorted on the factor
(the grouping variable, in the order implied by the contrast coefficients.
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contrasts.factora <- cbind(ac1=c(2,-1,-1),ac2=c(0,1,-1))
# or
# contrasts.factora <- matrix(c(2,-1,-1, 0,1,-1),ncol=2)
granova.contr(hays$dv,contrasts.factora)
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$summary.lm

Call:
lm(formula = resp ~ contrst)

Residuals:
Min 1Q Median 3Q Max
-8.4 -2.7 0.4 2.1 8.8

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4667 0.8132 28.858 <2e-16 ***
contrst1 3.9333 1.1500 3.420 0.002 **
contrst2 -0.3000 0.9959 -0.301 0.766
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 4.454 on 27 degrees of freedom
Multiple R-squared: 0.3039, Adjusted R-squared: 0.2524
F-statistic: 5.895 on 2 and 27 DF, p-value: 0.007513

$means.pos.neg.coeff
neg pos diff stEftSze

ac1 21.5 27.4 5.9 1.32
ac2 21.8 21.2 -0.6 -0.13

$contrasts
ac1 ac2

[1,] 1.0 0
[2,] -0.5 1
[3,] -0.5 -1

$group.means.sds
[,1] [,2] [,3]

Means 27.4 21.2 21.80
S.D.s 5.1 5.2 2.53

$data
[,1] [,2] [,3]

[1,] 27 23 23
[2,] 28 22 24
[3,] 33 18 21
[4,] 19 15 25
[5,] 25 29 19
[6,] 29 30 24
[7,] 36 23 22
[8,] 30 16 17
[9,] 26 19 20
[10,] 21 17 23

Conclusion:

Granova is a fascinating approach. It gives all of the basics we need. The graphs that are
produced are very helpful in an instructional context, reminding us what “Mean Squares”
means. But I have never seen this plot used for a research publication. One would likely have
to spend a large amount of time convincing an editor and reviewers of its value.

The recommendation here is to use it as a sort of exploratory device rather than for the
production of a publication quality graph.
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4.3 Use of the ez package

Among a number of additional ways to obtain ANOVA results for experimental designs, the
ez package intends to be comprehensive ANOVA modeling suite. It requires a unique way of
specifying the DV, IV, and several other components. Once the syntax is learned, many R
users have found it to be efficient. I find that it adds nothing to what we have accomplished
above for 1-way designs, but it may be useful for factorial designs.

The EZ package contains the ezAnova function which serves as a wrapper for many of the
things shown above. It is a quick way to obtain a fairly full analysis. It does not appear to
enable inferences regarding analytical/orthogonal contrasts. emmeans would have to be used
as a supplement in order to obtain them.

Note at the outset that functions from ez require a data frame that contains a case number
(subject number) variable. Since the original hays data frame was sorted by group, it made
it easy to simply specify subject (case) number as the sequential order number of the case in
the data frame. Since the ez ANOVA functions permit an argument that specifies the data
frame, we don’t have to be concerned about conflicts arising because the original hays data
frame was “attached”.

#require(ez)
# in order to use ez functions we need a subject number variable in the data frame
snum <- ordered(rownames(hays))
hays2 <- cbind(snum,hays)
# examine hays2
headTail(hays2)

snum factora dv
1 1 control 27
2 2 control 28
3 3 control 33
4 4 control 19
... <NA> <NA> ...
27 27 slow 22
28 28 slow 17
29 29 slow 20
30 30 slow 23

# first, obtain descriptives; note that FLSD is Fisher's LSD critical value
# note that Fisher's Least Significant Difference is computed as
# sqrt(2)*qt(.975,DFd)*sqrt(MSd/N), where N is taken as the mean N
# per group in cases of unbalanced designs.
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descript1 <- ezStats(
data = hays2,
dv = .(dv),
wid= .(snum),
between= .(factora))

print(descript1)

factora N Mean SD FLSD
1 control 10 27.4 5.103376 4.086908
2 fast 10 21.2 5.202563 4.086908
3 slow 10 21.8 2.529822 4.086908

The ezPlot function provides graphing capabilities tailored to the experimental design. I
found it interesting that the error bars on the figure are derived from a generalized standard
error of the mean based on the MSerror from the ANOVA, rather than the individual standard
errors for each group, which are not actually used for anything.

# now plot the cell means and error bars.
# error bars based on GSEM as described above for Fishers LSD
plot1 <- ezPlot(

data = hays2,
dv = .(dv),
wid= .(snum),
between= .(factora),
x = .(factora),
do_lines=FALSE, do_bars=TRUE,
x_lab= 'Treatment Group',
y_lab= 'Mean DV Score')

print(plot1)
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Use of the ezANOVA function involves a novel style of code, using a non-intuitive dot notation
for specifying IVs, but one becomes accustomed to this fairly quickly. Once again, the same
values for SS/F/pvalue are produced. An added benefit is that the Levene homogeneity of
variance test is automatically generated (the median-centered version). It is important that
an effect size indicator is also provided (“ges”, discussed elsewhere - or read the help page on
the ez package).

# now do the 1way ANOVA
fit.4ez <- ezANOVA(

data = hays2,
dv = .(dv),
between= .(factora),
wid=snum,
detailed=TRUE)

print(fit.4ez)

$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges

1 factora 2 27 233.8667 535.6 5.894698 0.007512513 * 0.3039335

$`Levene's Test for Homogeneity of Variance`
DFn DFd SSn SSd F p p<.05

1 2 27 27.46667 184.7 2.00758 0.1538727

62



By default, ezANOVA employs Type II SS decompositions. Although this distinction is only
relevant for factorial designs (and unequal sample sizes) it would be useful to put in place the
argument that permits specification of other SS types. The following code requests Type III
SS. Unfortunately the output does not label the SS Type, so one has to be certain with the
code.

# now do the 1way ANOVA
fit.4bez <- ezANOVA(

data = hays2,
dv = dv,
between= .(factora),
wid=snum,
type=3,
detailed=TRUE)

print(fit.4bez)

$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges

1 (Intercept) 1 27 16520.5333 535.6 832.812547 7.900265e-22 * 0.9685978
2 factora 2 27 233.8667 535.6 5.894698 7.512513e-03 * 0.3039335

$`Levene's Test for Homogeneity of Variance`
DFn DFd SSn SSd F p p<.05

1 2 27 27.46667 184.7 2.00758 0.1538727

EZ permits resampling tests. Here, we implement a permutation test. I show the code but
suppress a lengthy status printout while it is doing the resampling. The result of the test is
obtained in the next code chunk. The permutation algorithm is fairly slow and I don’t know
if the ezPerm function can address analytical contrasts. We will revist permutation tests in a
later chapter.

# now do the 1way anova as a permutation test
fit.5ezperm <- ezPerm(

data = hays2,
dv = dv,
between= .(factora),
snum,
perm= 1e3)

fit.5ezperm
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Effect p p<.05
1 factora 0.005 *

The ez packages has functions to perfom bootstrapping, but right now older code that I used
is broken and I’ve not yet sorted out why, so bootstrapping excluded for now. We can return
to bootstrapping in a later chapter.

One additional capability in ez is an interesting graphical approach to displaying the data set.
T This plot is Not the values of the DV, but locations where the various groups of cases are
in the ordering of the data frame.

# other useful functions in the ez package
#win.graph()
ezDesign(

data = hays2,
x= .(factora),
y= .(snum),
row=NULL,col=NULL,
cell_border_size=8)
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4.4 Using the afex package

The afex package is a wrapper for lm, car, and lme4 functions, the latter to do mixed models.
The stated goals are a comprehensive set of functions for virtually all kinds of ANOVA models.
My initial investigations into its usage have engendered a mix of optimism and concern over
the scope of what it can do, the kinds of decisions that were made about restricting some kinds
of ANOVA approaches, and ease of use. What is presented here is the bare bones analysis of
our 3 group design. This section may expand as I become more skilled with afex.

First, lets use the “car” flavor of the afex approach to model the 3-group data set. Note that
afex requires a data frame that has an identifier variables (such as subject number). I created
such a data frame for the ez package functions above, so we can use the same “hays2” data
frame here as well. Note that even though we have “attached” the original hays data frame,
there is no conflict that arises by using the same variable names in hays2. This is because the
afex functions permit naming the data frame as an argument.

In using afex, we choose one of three styles of specifying the model. The first shown here
models on how the specification would be made in doing ANOVAs using functions from the
car package. The afex package functon is thus aov_car. Unlike what we have seen above, this
approach requires specification of the error factor - the “snum” variable is the case identifier
and serves this role. We can think of the error as the variation in the DV due to snum within
the factora levels.

Note that the aov_car function changes factor coding to what we have called “effect” coding
(also known as deviation coding). In R, this is defined as contr.sum.

# needs data frame with subj id. use hays2.csv
fitx1 <- aov_car(dv~factora + Error(snum), data=hays2)

Contrasts set to contr.sum for the following variables: factora

fitx1

Anova Table (Type 3 tests)

Response: dv
Effect df MSE F ges p.value

1 factora 2, 27 19.84 5.89 ** .304 .008
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

A bit better layout and info provision is possible with the ‘return’ argument, although we lose
the “ges” effect size indicator.
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# obtain a fuller table but without the effect size
fitx2 <- aov_car(dv~factora + Error(snum), data=hays2, return="univariate" )

Contrasts set to contr.sum for the following variables: factora

fitx2

Anova Table (Type III tests)

Response: dv
Sum Sq Df F value Pr(>F)

(Intercept) 16520.5 1 832.8125 < 2.2e-16 ***
factora 233.9 2 5.8947 0.007513 **
Residuals 535.6 27
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that with aov_car, the SS decomposition is, by default, Type III. Adding a “type”
argument permits control of this characteristic. But in our 1way design with equal N, there is
no difference in Type I, II, and III SS. The illustration is done here as a placeholder for what
we will do later with factorial designs.

# obtain a fuller table but without the effect size
fitx2b <- aov_car(dv~factora + Error(snum), data=hays2, return="univariate", type=2)

Contrasts set to contr.sum for the following variables: factora

fitx2b

Anova Table (Type II tests)

Response: dv
Sum Sq Df F value Pr(>F)

factora 233.87 2 5.8947 0.007513 **
Residuals 535.60 27
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Postscript on current status of afex usage here:

Some advantages of using afex for other designs will be seen in later work with factorial and
repeated measures designs. However, for our one-way anova needs here, this package adds only
one thing. That is the “generalized effect size” (called ges) obtained with fitx1. In a oneway
model, the ges is identical to the eta squared. The basic ANOVA with SS, df, F’s and pvalue
are obviously the same as we have derived many other ways earlier in this document.

In conjunction with ‘glht’ and emmeans, afex has some broadly capable methods for imple-
menting analytical contrasts and post hoc testing methods. Some of those illustrations are
found in succeeding chapters.
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5 Post Hoc and Multiple Comparison Methods

This could be a very long section…… I am trying to keep it brief, as a template, rather than
an extended exposition on multiple comparison approaches and their relative merit.

For all of these functions the user should carefully examine the help pages and any documenta-
tion vignettes before using them. In some cases, the function can be applied to ANOVA model
objects already created, such as our aov and lm fits from above (fit.1 and fit.2). Other multiple
comparison functions permit specification of the design within the function arguments.

5.1 The commonly used TUKEY test

Tukey’s HSD (also known as Tukey-Kramer) is easily accomplished on an ‘aov’ fit via a function
in the base stats package that is loaded upon startup. We can use the original fit.1 aov object.

tukeyfit1 <- TukeyHSD(fit.1, conf.level=.95)
tukeyfit1

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = dv ~ factora, data = hays)

$factora
diff lwr upr p adj

fast-control -6.2 -11.138591 -1.2614086 0.0117228
slow-control -5.6 -10.538591 -0.6614086 0.0238550
slow-fast 0.6 -4.338591 5.5385914 0.9513012

A graphical depiction of the result from ‘TukeyHSD’ function is easily obtained.

plot(tukeyfit1)
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5.2 Using the asbio package for Post Hoc pairwise comparisons

Several functions in asbio are helpful for various multiple comparison tests. They each produce
all possible pairwise group comparisons. The reader should utilize the help (e.g., ‘?lsdCI’) for
documentation on these functions to see the array of options available.

First, the so-called Fisher’s Protected LSD test is obtained. Recall that when there are three
groups, simulation work has shown that performing the LSD tests following a significant om-
nibus F test does afford protection from error rate inflation. But when the design has more
than three groups, the LSD test CANNOT be recommended.

Several functions below can specify the model simply by passing the DV and IV a arguments,
in that order.

# The asbio package has several functions that permit pairwise post hoc
# multiple comparison tests:
#require(asbio)
lsdCI(hays$dv,hays$factora)

95% LSD confidence intervals

69



LSD Diff Lower Upper Decision Adj. p-value
mucontrol-mufast 4.08691 6.2 2.11309 10.28691 Reject H0 0.00435
mucontrol-muslow 4.08691 5.6 1.51309 9.68691 Reject H0 0.00907
mufast-muslow 4.08691 -0.6 -4.68691 3.48691 FTR H0 0.76555

Next is a simple bonferroni adjustment.

#require(asbio)
bonfCI(hays$dv,hays$factora)

95% Bonferroni confidence intervals

Diff Lower Upper Decision Adj. p-value
mucontrol-mufast 6.2 1.11592 11.28408 Reject H0 0.013052
mucontrol-muslow 5.6 0.51592 10.68408 Reject H0 0.027217
mufast-muslow -0.6 -5.68408 4.48408 FTR H0 1

asbio also has a function for the standard Tukey HSD test.

#require(asbio)
tukeyCI(hays$dv,hays$factora)

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
mucontrol-mufast 6.2 1.26141 11.13859 Reject H0 0.011723
mucontrol-muslow 5.6 0.66141 10.53859 Reject H0 0.023855
mufast-muslow -0.6 -5.53859 4.33859 FTR H0 0.951301

Implementation of the Scheffe test is also possible

#require(asbio)
scheffeCI(hays$dv,hays$factora)

95% Scheffe confidence intervals

Diff Lower Upper Decision Adj. P-value
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mucontrol-mufast 6.2 1.04108 11.35892 Reject H0 0.015929
mucontrol-muslow 5.6 0.44108 10.75892 Reject H0 0.031227
mufast-muslow -0.6 -5.75892 4.55892 FTR H0 0.955717

In designs with a control group and several treatment conditions, a recommended approach
is the use of the Dunnett test. This controls alpha-rate inflation for all pairwise comparisons
involving the control condition vs each treatment.

# the asbio package permits implementation of the Dunnett test
# with specification of the ANOVA model and the level of the control group
#require(asbio)
dunnettCI(hays$dv,hays$factora,control="control")

95% Dunnett confidence intervals

Diff Lower Upper Decision
mufast-mucontrol -6.2 -10.848181 -1.551819 Reject H0
muslow-mucontrol -5.6 -10.248181 -0.951819 Reject H0

5.3 Additional multiple comparison functions

An alternative function for performing the Dunnett test is found in multcomp. With any
future work in R, you will see frequent use of the ghlt and mcp functions. One can simply
pass the ‘aov’ fit object to the function. It is also possible to change the type of MC test to
other “flavors” with the ‘linfct’ argument. See the help page on this function. ghlt is a very
widely used function for multiple comparisons.

# The Dunnett test can also be obtained from the multcomp package.
#require(multcomp)
fit1.dunnett <- glht(fit.1,linfct=mcp(factora="Dunnett"))
# obtain CI's to test each difference
confint(fit1.dunnett, level = 0.95)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts
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Fit: aov(formula = dv ~ factora, data = hays)

Quantile = 2.3335
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

fast - control == 0 -6.2000 -10.8480 -1.5520
slow - control == 0 -5.6000 -10.2480 -0.9520

The DTK package implements an alternative to the Tukey HSD method that permits appli-
cation to data sets with unequal N’s and heterogenous variances. Notice that the CI’s are not
the same for the base Tukey application and the DTK application owing to this capability for
unequal N’s (which we don’t have) and heterogeneity.

#require(DTK)
# first, repeat the Tukey HSD test procedure in DTK to compare to above:
TK.test(hays$dv,hays$factora) # should give the same outcome as both to Tukey HSD approaches above

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = x ~ f)

$f
diff lwr upr p adj

fast-control -6.2 -11.138591 -1.2614086 0.0117228
slow-control -5.6 -10.538591 -0.6614086 0.0238550
slow-fast 0.6 -4.338591 5.5385914 0.9513012

# now request the Dunnett-Tukey-Kramer test:
DTK.test(hays$dv,hays$factora)

[[1]]
[1] 0.05

[[2]]
Diff Lower CI Upper CI

fast-control -6.2 -12.634414 0.2344137
slow-control -5.6 -10.629056 -0.5709442
slow-fast 0.6 -4.507666 5.7076663
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The outcome with the Hays data set may be surprising. Note that, with ‘DTK’ the first com-
parison, fast vs ctl, has a CI that now overlaps zero, and is thus “NS”. The second comparison,
slow vs ctl is a smaller mean difference, but the adjusted CI does not overlap zero. This differs
from the standard Tukey HSD test.

Confusing? now look back at the descriptive statistics for these three groups. note that even
though the homogeneity of variance tests were NS (a later section in this document), the std
dev is smaller for the “slow” group. Since DTK does not use the pooled within group variance
as the “error term” and uses Welch or Fisher-Behrens type error from just the two groups
involved, the differences in the within-group variances can affect the outcome. The error df
will also be smaller since the pooled MS is not used. Such discrepancies from “expected”
outcomes can become even more extreme when n’s are unequal. This is a nice function to
have available.

We can also plot the CI’s derived from DTK.

DTK.result <- DTK.test(hays$dv,hays$factora)
DTK.plot(DTK.result)
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5.4 REGWQ is a recommended test

The mutoss package, provides an implementation of the Ryan / Einot and Gabriel / Welch
test procedure (REGWQ). It is recognized as an acceptable improvement on the logic of the
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Newman Keuls procedure, a method which is not recommended. REGWQ typically requires
equal N, but the package author has created a modification that permits unequal N using the
Welch t test logic.

REGWQ is typically described as an approach using the studentized range statistic (as does
Tukey HSD and Neuman Keuls), but the r-value for the q statistic is the average of the Tukey
r and the N-K r. It is thought that it provides more power than N-K, while adequately
controlling Type I error inflation (that N-K does not).

#require(mutoss)
#note: mutoss requires three packages not available on CRAN. Obtain them from
# bioconductor. These packages are
# Biobase
# BioGenerics
# multtest
# to install, see
# http://www.bioconductor.org/packages/release/bioc/html/Biobase.html
# http://www.bioconductor.org/packages/release/bioc/html/BiocGenerics.html
# http://www.bioconductor.org/packages/release/bioc/html/multtest.html
regwq1 <- regwq(hays$dv~hays$factora, alpha=.05, data=hays)
regwq1

#----REGWQ - Ryan / Einot and Gabriel / Welsch test procedure

Number of hyp.: 3
Number of rej.: 2
rejected pValues adjPValues

1 3 0.0091 0.0091
2 1 0.0117 0.0117
$adjPValues
[1] "0.0117" "0.7655" "0.0091"

$rejected
[1] TRUE FALSE TRUE

$statistic
[1] 4.402 0.426 3.976

$confIntervals
[,1] [,2] [,3]

control-fast 6.2 NA NA
slow-fast 0.6 NA NA
control-slow 5.6 NA NA
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$errorControl
An object of class "ErrorControl"
Slot "type":
[1] "FWER"

Slot "alpha":
[1] 0.05

Slot "k":
numeric(0)

Slot "q":
numeric(0)

5.5 The Games-Howell Modification of the Tukey Test

A commonly used post hoc test by psychology researchers is the games-howell modification
of the tukey test for situations when unequal samples sizes and heterogeneity of variance are
present.

5.5.1 The oneway function from userfriendlyscience has capabilities for post hoc
tests.

The oneway function will provide the standard set of p.adjust capabilities for alpha rate
adjustment (e.g., “holm”, “fdr”, “bonferroni”, etc). It will also implement the Tukey HSD test
and the Games-Howell modification of the Tukey test.

oneway(y=hays$dv, x=hays$factora, posthoc=c("tukey"))

### Oneway Anova for y=dv and x=factora (groups: control, fast, slow)

Omega squared: 95% CI = [.03; .5], point estimate = .25
Eta Squared: 95% CI = [.06; .46], point estimate = .3

SS Df MS F p
Between groups (error + effect) 233.87 2 116.93 5.89 .008
Within groups (error only) 535.6 27 19.84
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### Post hoc test: tukey

diff lwr upr p adj
fast-control -6.2 -11.14 -1.26 .012
slow-control -5.6 -10.54 -0.66 .024
slow-fast 0.6 -4.34 5.54 .951

oneway(y=hays$dv, x=hays$factora, posthoc=c("games-howell"))

### Oneway Anova for y=dv and x=factora (groups: control, fast, slow)

Omega squared: 95% CI = [.03; .5], point estimate = .25
Eta Squared: 95% CI = [.06; .46], point estimate = .3

SS Df MS F p
Between groups (error + effect) 233.87 2 116.93 5.89 .008
Within groups (error only) 535.6 27 19.84

### Post hoc test: games-howell

diff ci.lo ci.hi t df p
fast-control -6.2 -12.08 -0.32 2.69 17.99 .038
slow-control -5.6 -10.35 -0.85 3.11 13.17 .021
slow-fast 0.6 -4.23 5.43 0.33 13.03 .943

5.5.2 A second way to implement the Games-Howell test.

I have found a script that does the test; I cannot vouch for the accuracy of this code - still
testing it, but it does match what was produced by the oneway function above.

# http://aoki2.si.gunma-u.ac.jp/R/src/tukey.R
source("tukey_gh.R")
tukeygh(data=hays$dv,group=hays$factora,method="Games-Howell")

$result1
n Mean Variance

Group1 10 27.4 26.04444
Group2 10 21.2 27.06667
Group3 10 21.8 6.40000
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$Games.Howell
t df p

1:2 2.6902894 17.99333 0.03791342
1:3 3.1089795 13.17132 0.02087408
2:3 0.3279782 13.03080 0.94268531

Aaron Schliegel has independently offered another function to perform the GH test, but I have
not yet examined it and compared to the ones I use here.

https://rpubs.com/aaronsc32/games-howell-test

5.6 Using the ‘pairwise.t.test’ function for MC tests

This section describes the very helpful ‘pairwise.t.test’ function. It has similarities to the logic
we saw above with ‘p.adjust’. It has two major attractive features: 1. It permits use of many
of the error-rate control methods in the “bonferroni” family that we have seen recommended.
2. It permits use of either the pooled within-group error term (when the HOV assumption
is satisfied) or a Welch approach to the t statistic when heterogeneity of variance is present.
This is the ‘pool.sd’ argument.

I list code for choosing may of the flavors of correction, but only show output for two.

# first, just do pairwise comparisons with bonferroni corrections
# assumes having done a set of three "contrasts". should match results seen
# above in the BonferroniCI function from asbio.
pairwise.t.test(hays$dv,hays$factora,pool.sd=TRUE,p.adj="bonf")
# We can change the approach to the Holm, Hochberg, Hommel,
# Benjamini and Hochberg, Benjamini&Yekutieli, and fdr corrections,
# as well as "none" which will give the same thing as the LSD test.
# Choice of these depends on several factors, including whether
# the contrasts examined are independent (and they are not since they
# are all of the pairwise comparisons,
# Of these modified bonferroni type of approaches, only the "BY"
# approach is probably the most appropriate here, since some of our
# comparisons are correlated and BY permits that correlation to be either
# positive or negative
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="holm")
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="hochberg")
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="hommel")
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="BH")
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="BY")
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pairwise.t.test(hays$dv,hays$factora,pool.sd=TRUE,p.adj="fdr") #note that fdr = BH
#pairwise.t.test(dv,factora,pool.sd=TRUE,p.adj="none")

Pairwise comparisons using t tests with pooled SD

data: hays$dv and hays$factora

control fast
fast 0.013 -
slow 0.027 1.000

P value adjustment method: bonferroni

Pairwise comparisons using t tests with pooled SD

data: hays$dv and hays$factora

control fast
fast 0.013 -
slow 0.014 0.766

P value adjustment method: fdr

Now demonstrate two of these tests again, but use ‘pool.sd=FALSE’.

# note that setting pool.sd to FALSE changes the outcome since
# it employs a Welch or Fisher-Behrens type of approach
pairwise.t.test(hays$dv,hays$factora,pool.sd=FALSE,p.adj="bonf")
# or
pairwise.t.test(hays$dv,hays$factora,pool.sd=FALSE,p.adj="fdr")

Pairwise comparisons using t tests with non-pooled SD

data: hays$dv and hays$factora

control fast
fast 0.045 -
slow 0.025 1.000
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P value adjustment method: bonferroni

Pairwise comparisons using t tests with non-pooled SD

data: hays$dv and hays$factora

control fast
fast 0.022 -
slow 0.022 0.748

P value adjustment method: fdr

It is interesting that contol vs fast is found to be significant here for the bonferroni test
(p=.045). So simply using the non-pooled error is not sufficient to produce a NS test as was
the case above for ‘DTK’. ‘DTK’ is more conservative because of the Tukey family derivation
instead of the bonferroni family derivation.

5.7 The Neuman-keuls test

Psychology researchers had commonly used the Neuman-Keuls test for many decades, since it
afforded a power improvement over the Tukey HSD test. Simulation work has now found that
it underperforms in the core goal of controlling Type I error rate inflation. I cannot recommend
it so I do not do an example here. However, if once is forced to use it (by misinformed advisors
or collaborators), it is possible to find R functions to do it.

One possibility is the ‘SNK.test’ function in the agricolae package.

5.8 The glht function for post hoc tests and contrasts

The multcomp package has some capabilities for multiple comparisons that are useful for
a variety of model objects, including aov and lm. If we apply glht here, requesting Tukey
adjustments for pairwise comparisons, we find that it matches the output from the TukeyHSD
function above (at least to three decimals). We use the fit.3lm object first produced with the
lm function in chapter 02.

#library(multcomp)
glht.tukey <- glht(fit.3lm, linfct = mcp(factora="Tukey"))
summary(glht.tukey)
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Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = dv ~ factora, data = hays)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

fast - control == 0 -6.200 1.992 -3.113 0.0116 *
slow - control == 0 -5.600 1.992 -2.811 0.0238 *
slow - fast == 0 0.600 1.992 0.301 0.9513
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

confint(glht.tukey)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = dv ~ factora, data = hays)

Quantile = 2.4786
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

fast - control == 0 -6.2000 -11.1371 -1.2629
slow - control == 0 -5.6000 -10.5371 -0.6629
slow - fast == 0 0.6000 -4.3371 5.5371

The same glht function can also handle contrasts and they don’t have to be orthogonal. For
example,
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contr <- rbind("Ctl-Fast" = c(1, -1, 0),
"Ctl-SLow" = c(1, 0, -1),
"Fast-Slow"= c(0,1,-1))

glht.contr1 <-glht(fit.3lm,
linfct = mcp(factora=contr))

summary(glht.contr1, test=adjusted("holm"))
summary(glht.contr1, test=adjusted("none"))
confint(glht.contr1)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: lm(formula = dv ~ factora, data = hays)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Ctl-Fast == 0 6.200 1.992 3.113 0.0131 *
Ctl-SLow == 0 5.600 1.992 2.811 0.0181 *
Fast-Slow == 0 -0.600 1.992 -0.301 0.7655
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- holm method)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: lm(formula = dv ~ factora, data = hays)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Ctl-Fast == 0 6.200 1.992 3.113 0.00435 **
Ctl-SLow == 0 5.600 1.992 2.811 0.00907 **
Fast-Slow == 0 -0.600 1.992 -0.301 0.76555
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- none method)
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Simultaneous Confidence Intervals

Multiple Comparisons of Means: User-defined Contrasts

Fit: lm(formula = dv ~ factora, data = hays)

Quantile = 2.4781
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

Ctl-Fast == 0 6.2000 1.2641 11.1359
Ctl-SLow == 0 5.6000 0.6641 10.5359
Fast-Slow == 0 -0.6000 -5.5359 4.3359
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6 Beginning to Explore the emmeans package
for post hoc tests and contrasts

The emmeans package is one of several alternatives to facilitate post hoc methods application
and contrast analysis. It is a relatively recent replacement for the lsmeans package that some
R users may be familiar with. It is intended for use with a wide variety of ANOVA models,
including repeated measures and nested designs where the initial modeling would employ ‘aov’,
‘lm’ ‘ez’ or ‘lme4’ (mixed models).

6.1 Using emmeans for pairwise post hoc multiple comparisons.

Initially, a minimal illustration is presented. First is a “pairwise” approach to followup com-
parisons, with a p-value adjustment equivalent to the Tukey HSD test. The emmeans function
requires a model object to be passed as the first argument. We could use either fit1 (the aov
object) or fit2 (the lm object) originally created in the base ANOVA section of this document.

First, emmeans is used to extract a “grid” of group descriptive statistics including mean, SEM
(based on the pooled error term), df, and upper and lower 95% CI values.

#library(emmeans)
# reminder: fit.2 <- lm(dv~factora, data=hays)
fit2.emm.a <- emmeans(fit.2, "factora", data=hays)
fit2.emm.a

factora emmean SE df lower.CL upper.CL
control 27.4 1.41 27 24.5 30.3
fast 21.2 1.41 27 18.3 24.1
slow 21.8 1.41 27 18.9 24.7

Confidence level used: 0.95

The emmeans object can then be passed to either the pairs function for tests, or the plot
function for graphing.
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pairs(fit2.emm.a, adjust="tukey")
#pairs(fit2.emm.a, adjust="none") #see help on emmeans for other options
plot(fit2.emm.a, comparisons = TRUE, adjust="tukey", int.adjust="tukey")

Note: adjust = "tukey" was changed to "sidak"
because "tukey" is only appropriate for one set of pairwise comparisons

control

fast

slow

20 24 28
emmean

fa
ct

or
a

contrast estimate SE df t.ratio p.value
control - fast 6.2 1.99 27 3.113 0.0117
control - slow 5.6 1.99 27 2.811 0.0239
fast - slow -0.6 1.99 27 -0.301 0.9513

P value adjustment: tukey method for comparing a family of 3 estimates

The blue bars on the plot are the confidence intervals. The red arrowed lines represent a
scheme to determine homogeneous groups. If the red lines overlap for two groups, then they
are not significantly different using the method chosen.

The ‘adjust’ argument can take one of several useful methods. ‘tukey’ is default, but others
including ‘sidak’, ‘bonferroni’, etc can be specified. Specifying ‘none’ produces unadjusted
p-values. See help with ‘?emmeans::summary.emmGrid’ for details. Here is an example using
the ‘BH’ method of adjustment (same as ‘fdr’).
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library(emmeans)
fit2.emm.b <- emmeans(fit.2, "factora", data=hays)
pairs(fit2.emm.b, adjust="BH")

contrast estimate SE df t.ratio p.value
control - fast 6.2 1.99 27 3.113 0.0131
control - slow 5.6 1.99 27 2.811 0.0136
fast - slow -0.6 1.99 27 -0.301 0.7655

P value adjustment: BH method for 3 tests

#pairs(fit2.emm.a, adjust="none")
plot(fit2.emm.b, comparisons = TRUE, adjust="BH", int.adjust="BH")
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slow
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emmean
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a

6.2 Analytical Contrasts

Next, we will create linear combination contrasts and test them. Notice that in “testing”
the contrast, no alpha-rate control adjustments are made. This produces t-values that are
the square root of the F’s we found above for the ‘split’ approach on ‘aov’ or the regression
coefficient t values from ‘lm’ objects with ‘summary’. It is also possible to obtain confidence
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intervals on the contrasts, and I show how an adjustment can be done (but it wouldn’t make
sense to adjust the CIs with one method and the tests with another. I show a commented test
and confint functions to remind us that the adjustment could be applied. But the output is
showing only unadjusted tests and CIs - appropriate if the set of contrasts is a priori.

Interpreting the scale of the estimates and CIs is potentially problematic. If they are in the
scale of 2, -1, -1 and 0, 1, -1, they would produce the 11.8 and -.6 psi values we have seen
several times previously for this data set. It is all well and good if the only thing we are using
the CIs for is to evaluate whether they overlap zero (as a proxy for the hypothesis test). But
the actual range of values is arbitrarily dependent on the values of the Coefficients (thus their
variance). One strategy might be to implement what we saw in SPSS UNIANOVA. We could
constrain the largest coefficient value to be a “1”, and use fractions for the remainder, when
necessary. This would put the estimates and CI’s on a scale that fits the way we discuss the
contrasts: Contrast 1 evaluates whether control differs from the average of fast and slow. The
5.9 estimate seen below is meaningful in this way of scaling the contrasts, and is half the 11.8
value seen with the 2, -1, -1 coefficients.

So a rework of the earlier approach to contrasts above could look like this using test function
on the contrasts fit to the emm model grid of means:

lincombs <- contrast(fit2.emm.a,
list(contr1=c(1,-.5,-.5), contr2=c(0,1,-1))) # second one not changed

test(lincombs, adjust="none")
#test(lincombs, adjust="sidak")
confint(lincombs, adjust="none")
#confint(lincombs, adjust="sidak")

contrast estimate SE df t.ratio p.value
contr1 5.9 1.72 27 3.420 0.0020
contr2 -0.6 1.99 27 -0.301 0.7655

contrast estimate SE df lower.CL upper.CL
contr1 5.9 1.72 27 2.36 9.44
contr2 -0.6 1.99 27 -4.69 3.49

Confidence level used: 0.95

To re-emphasize….. the psi value for the contrasts are directly related to how we speak about
what the contrasts are evaluating. The mean of “control” is 5.9 units above the average of the
“fast” and “slow” conditions. And for the second contrast, “fast” is .6 units below the mean of
“slow”. In this scaling, the CIs are more directly interpretable at their edges. But make sure
to note that the t values and p values do not change with this scaling change.
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6.3 Concluding comments on emmeans

The emmeans package is a very powerful tool. But it is almost overkill for a one-way design.
Its utility will become impressive for factorial between-groups designs, for repeated measures
designs, and for linear mixed effect models. The goal is to revisit it with the first two of those
three applications.

87



7 Assumptions: Evaluation and Methods for
handling their violation

This section reviews both graphical and inferential methods for evaluating the assumptions for
the 1-way ANOVA omnibus F test, and the use of the pooled within-group error for contrasts
and multiple comparisons

7.1 Graphical evaluation of Residuals

In order to provide graphical displays for residuals analysis, R provides a very simple approach
when working with linear models. All that is required is to request a plot of the model and
this provides the relevant residuals plots. All four fits from above (chap03) yield the same
residuals, so lets just look at fit.2 since it used ‘lm’. This is the same approach we have covered
for regression models in R.

The first, commented, code line (plot(fit.2)) produces all four plots and the user is required
to click or hit the enter key to advance through the set. Instead, I request each individually,
but only display the two we are most familiar with since they are the relevant ones here.

#plot(fit.2)
# now produce the same 4 graphs in their own windows
plot(fit.2,which=1) #residuals vs yhats
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#plot(fit.2,which=3)
#plot(fit.2,which=5)

A better qq plot is available in the car package. It adds a confidence envelope to the qqnormal
plot in order to better gauge, visually, how well the variable fits a normal distribution. Here,
the residuals are extracted from the fit.2 lm object and passed to the qqPlot function.

car::qqPlot(fit.2$residuals, distribution="norm", id=FALSE)
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These standard plots produced by the base system ‘plot’ function do not include a frequency
histogram of the residuals. It is useful, and can be done quickly by extracting the residuals from
the ‘lm’ fit object and passing them directly to the ‘histogram’ function. In this illustration
the histogram is not embellished with any additional text or style changes from defaults. The
histogram would be more useful in larger N data sets than for this small example. In this
example the deviation from normality is no too bad, especially for a small sample size study.

hist(fit.2$residuals, breaks=8, prob=TRUE)
lines(density(fit.2$residuals))
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7.2 Inferences about the Normality Assumption

R provides several approaches to evaluation of the normality of a variable. The most well-
known test is the Shapiro-Wilk test. That test is shown here along with the Anderson-Darling
test which is (by my read) a preferred approach. Other tests are also available, and the code
is shown, although commented out and not executed here. Note an alternative way of passing
the ‘lm’ fit object residuals to a function rather than the fit.2$residuals approach taken
for the frequency histogram above. These tests do not permit rejection of the null hypothesis
of residual normality, an outcome that is consistent with the visualizations done above.

# Perform the Shapiro-Wilk test for normality on the residuals
shapiro.test(residuals(fit.2))

Shapiro-Wilk normality test

data: residuals(fit.2)
W = 0.97096, p-value = 0.5656
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# use tests found in the nortest package, as we reviewed for multiple regression
#library(nortest)
nortest::ad.test(residuals(fit.2)) #get Anderson-Darling test for normality (nortest package must be installed)

Anderson-Darling normality test

data: residuals(fit.2)
A = 0.30011, p-value = 0.5599

#cvm.test(residuals(fit.2)) #get Cramer-von Mises test for normaility (nortest package must be installed)
#lillie.test(residuals(fit.2)) #get Lilliefors (Kolmogorov-Smirnov) test for normality (nortest package must be installed)
#pearson.test(residuals(fit.2)) #get Pearson chi-square test for normaility (nortest package must be installed)
#sf.test(residuals(fit.2)) #get Shapiro-Francia test for normaility (nortest package must be installed)

7.3 Inferential tests regarding the homogeneity of Variance
Assumption

Several tests are available in R for the ANOVA-related homogeneity of variance assumption.
The reader will recall that we saw other tests of homoscedasticity for regression models in R
code illustrations for those models. They are also appropriate here, but are not repeated in
order to save space. The most common tests are those in the “Levene” family, but others are
shown here as well.

The first test is The Bartlett Test from stats package (stats is part of the base install). This
test is not identical to the Bartlett-Box test produced by SPSS MANOVA, but it is close. The
Bartlett-Box F-test reported in MANOVA is an adaptation to the univariate case of the Box’s
M test for multivariate data. The Bartlett test in R is based on an original paper by Bartlett
(1937?) and should probably converge very closely on the Bartlett-Box F approximation. The
Bartlett test statistic is a chi-squared approximation. This test is sensitive to departures from
the normality in the DV.

bartlett.test(dv~factora,data=hays)

Bartlett test of homogeneity of variances

data: dv by factora
Bartlett's K-squared = 4.702, df = 2, p-value = 0.09527
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The Cochran’s C test for outlying variances is implemented in the outliers package. The
function ‘cochran.test’ requires the model specification and the data frame for execution. The
result appears to match the test result produced SPSS MANOVA for this same data set,
but df are different. I have yet to explore the df question for each of these implementations.
MANOVA reports 9,3 df where ‘cochran.test’ reports 10,3 df. The “sample estimates” are the
variances of the individual cells.

outliers::cochran.test(dv~factora, hays)

Cochran test for outlying variance

data: dv ~ factora
C = 0.45482, df = 10, k = 3, p-value = 0.5093
alternative hypothesis: Group fast has outlying variance
sample estimates:
control fast slow
26.04444 27.06667 6.40000

We can find the Levene Test in the car package this is actually the Brown-Forsythe modifica-
tion of the Levene test to be median-centered rather than mean-centered. We have seen that
what some SPSS procedures call the Levene test is actually the original Levene test that uses
mean-centering and is sensitive to the normality assumption. Here, the ‘leveneTest’ function
has a default of median centering (the desireable approach)

#require(car)
car::leveneTest(dv~factora,data=hays)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 2.0076 0.1539
27

The Levene test can also be obtained from the lawstat package. The lawtstat version is more
flexible, permitting mean centering,median centering, or trimmed-mean centering as well as
bootstrapping.

First, let’s use the mean-centering approach and demonstrate that this is what SPSS uses in
one-way and GLM (older versions of GLM).
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#require(lawstat)
lawstat::levene.test(hays$dv,hays$factora,location="mean")

Classical Levene's test based on the absolute deviations from the mean
( none not applied because the location is not set to median )

data: hays$dv
Test Statistic = 2.0588, p-value = 0.1472

Next is the median centering approach to match leveneTest from car, and to provide the
Brown-Forsythe method that was the modification of Levene to be more robust against non-
normality.

lawstat::levene.test(hays$dv,hays$factora,location="median")

Modified robust Brown-Forsythe Levene-type test based on the absolute
deviations from the median

data: hays$dv
Test Statistic = 2.0076, p-value = 0.1539

A robust method used trimmed-mean centering; 20% of the scores are trimmed here.

lawstat::levene.test(hays$dv,hays$factora,location="trim.mean",trim.alpha=.2)

Modified robust Levene-type test based on the absolute deviations from
the trimmed mean ( none not applied because the location is not set to
median )

data: hays$dv
Test Statistic = 2.0179, p-value = 0.1525

This next approach returns to median centering, but implements the Obrien test which uses a
correction factor described by Obrien (1978) and removal of zeros by Hines and Hines (2000).
This is supposed to be a useful improvement on the basic Levene method and can be recom-
mended.
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lawstat::levene.test(hays$dv,hays$factora,location="median", correction.method="zero.correction")

Modified robust Brown-Forsythe Levene-type test based on the absolute
deviations from the median with modified structural zero removal method
and correction factor

data: hays$dv
Test Statistic = 2.4397, p-value = 0.1085

The ‘levene.test’ function from lawstat also permits a bootstrapping approach to obtaining
a test of the HOV asumption using the basic Levene median centering approach. This is
recommended if marked non-normality of the within-cell distributions exists.

# uses bootstrapping and the median-centered approach. from Lim and Loh, 1996
lawstat::levene.test(hays$dv,hays$factora,location="median",bootstrap=TRUE)

bootstrap Modified robust Brown-Forsythe Levene-type test based on the
absolute deviations from the median

data: hays$dv
Test Statistic = 2.0076, p-value = 0.134

The Fligner-Killeen test is a method that produces a chi-squared test statistic for a homogeneity
of variance test. The Fligner-Killen method is a non-parametric approach to the median-
centering absolute value method. I’ve not read any literature comparing it’s efficacy to the
suite of Levene-related methods. The user should do some homework on this method before
employing it.

fligner.test(hays$dv~hays$factora,data=hays)

Fligner-Killeen test of homogeneity of variances

data: hays$dv by hays$factora
Fligner-Killeen:med chi-squared = 4.0696, df = 2, p-value = 0.1307
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Finally, as an instructional tool, we can build our own function to do the median-centered
Levene Test. This gives the reader the details on what the test actually does. In addition,
it exposes the reader to the ‘tapply’ function which is a very useful member of the “apply”
family of functions. It permits us to do an operation (subtracting their group median from
individual DV scores). These new absolute value deviations are then simply analyzed with a
one-way anova (using ‘lm’ here). Note that the p-value matches what we obtained above for
both ‘leveneTest’ and ‘levene.test’.

# Here,I build the Brown-Forsythe modification of the Levene test from scratch:
# This should give you some insight into a bit of "The R Way"
bf.levene <- function(y, group)

{
group <- as.factor(group) # just to make certain the IV is a "factor"
medians <- tapply(y, group, median)
deviation <- abs(y - medians[group])
anova(lm(deviation ~ group))
}

bf.levene(hays$dv,hays$factora)

Analysis of Variance Table

Response: deviation
Df Sum Sq Mean Sq F value Pr(>F)

group 2 27.467 13.7333 2.0076 0.1539
Residuals 27 184.700 6.8407

7.4 A plot of cell means vs variances

A caveat at the outset: this type of plot is not terribly useful for studies with only three groups.
But with larger factorial anovas, it might be helpful.

We discussed this plot previously. Recall that this type of plot helps evaluate whether hetero-
geneity of variance might have arisen from a simple scaling issue. If so, then scale transfor-
mations may help. E.g„ a postive mean-variance correlation reflects a situation where a log
transformation or a fractional exponent transformation of the DV might produce homoscedas-
ticity. I’m also using the tapply function here in ways that we have not covered. tapply is
an important function in dealing with factors.

The issue with this particular design/plot is that a scatterplot with only three points cannot
possibly be relied upon to reveal a pattern. Nonetheless, it puts in place a technique for future
use in other design.
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plot(tapply(hays$dv, hays$factora, mean), tapply(hays$dv, hays$factora, var), xlab = "Cell Means",
ylab = "Cell Variances", pch = levels(hays$factora))
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7.5 What to do when assumptions are violated

Useful strategies are available for addressing inferential questions from a 1-factor ANOVA
design when assumptions are violated. Their number is very large. Some will be listed here.
What is important for the student is to realize that alternatives to both the omnibus F-test
and followup questions (e.g. contrasts, post hoc and other multiple comparison methods) are
available.

Alternatives to the standard Omnibus F-test:

• Welch F test when Heterogeneity of Variance is present. This test was illustrated above
with the ‘oneway.test’ function.

• A Brown-Forsythe modification of the F test is analogous to the Welch F test and is
found in output from the oneway function earlier in this document.

• Bootstrapping or permutation tests when non-normality is present A permutation test
was seen above with the ‘exAnova’ function. Bootstrapping is also availble in R and can
be applied to ANOVA models. These Resampling methods are covered briefly in a later
chapter
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• Robust methods based on robust central tendency estimators (see the WRS2 package
in R and much work by Rand Wilcox - and a later chapter in this document)

• Nonparametric methods are often used when DV distributions are divergent from nor-
mality. One of those is covered below, the Kruskall-Wallis test.

Alternatives to Post Hoc and Multiple Comparison Tests:

• Several MC tests are explicitly designed to cope with distributional assumption issues in
ANOVA data sets. These are discussed below in the Post Hoc/MC section

• One very commonly used approach in the psychological sciences is the “Games-Howell”
modification of the Tukey test for situations with Heterogeneity of Variance and Unequal
N. Other more recent approaches may be an improvement on the G-H method, but have
not received as much usage since they had only recently become available in software.

• The DTK test (Duncan/Tukey/Kramer) is another modification of the Tukey HSD test
for applications when there is unequal N and heterogeneity of variance. See the Post
Hoc / Multiple Comparisons section above.

• The Kruskall-Wallis test can also be followed up with nonparametric approaches to
pairwise multiple comparisons (see below)

Alternatives for Analytical Contrasts when assumptions are violated:

• Most commonly, when heterogeneity of variance is present, the approach to follow up
analysis involves one of the pairwise multiple comparison methods designed to cope with
that heterogeneity (see below).

• However, since any analytical contrast is viewed as a linear combination, standard errors
can be derived in the same manner as the Welch omnibus test is designed. I am still
looking for a simple implementation of this in R with regard to ANOVA contrasts. The
emmeans package provides one possible solution and was introduced above I am still
sorting out some confusions about use of emmeans for these purposes.

98



8 Effect Sizes, Power, and Sample Size
Planning

An important adjunct to NHST work with ANOVA is the provision of effect sizes. Although
there are several approaches possible to finding effect size statistics in R, they are fairly sim-
ple to obtain. Sample size planning can be accomplished with tools from the pwr package,
although I probably prefer the use of the GPower software for its broad capabilities.

8.1 Effect Sizes

In earlier sections of this document, we have already seen provision of some effect size statistics.
The multiple R-squared available from the ‘lm’ fit objects is also called eta-squared. The afex
package functions give the “generalized eta squared” statistic.

Note that in a 1-way design, partial eta squared values will equal the eta squared value, and
partial omega squared values will equal omega squared values.

Eta Squared, omega Squared, and Cohen’s F can be obtained quickly from the effectsize
package.

One additional useful function is provided here for computation of several commonly used
effect sizes (sjstats).

8.1.1 Use of the effectsize package

Two functions, eta_sq and omega_sq permit confidence interval calculation for either full or
partial effect size statistics. The partial effect size statistic concept really has no meaning in
1-way ANOVAS and that is reflected in the commentary produced by the functions.

The effect size functions are derived from “fit.1” which is the base aov model fit found in
chapter 02.

effectsize::omega_squared(fit.1, ci = .95)

For one-way between subjects designs, partial omega squared is
equivalent to omega squared. Returning omega squared.
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# Effect Size for ANOVA

Parameter | Omega2 | 95% CI
---------------------------------
factora | 0.25 | [0.02, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

effectsize::eta_squared(fit.1, ci = .95)

For one-way between subjects designs, partial eta squared is equivalent
to eta squared. Returning eta squared.

# Effect Size for ANOVA

Parameter | Eta2 | 95% CI
-------------------------------
factora | 0.30 | [0.06, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

The Cohen’s F statistics is also provided by a function from the effectsize package:

effectsize::cohens_f(fit.1, ci=.95)

For one-way between subjects designs, partial eta squared is equivalent
to eta squared. Returning eta squared.

# Effect Size for ANOVA

Parameter | Cohen's f | 95% CI
-----------------------------------
factora | 0.66 | [0.26, Inf]

- One-sided CIs: upper bound fixed at [Inf].
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8.2 Use of the sjstats package

The anova_stats function strikes me as very useful. It not only returns the basic ANOVA, but
provides several effect size indices, including Cohen’s f. Note that the “power” value returned
in the data frame produced by the anova_stats function is a post-hoc power calculation that
we have reviewed as a problematic concept in how it has often been applied. Refer to the
stattoolkit bibliography for the literature on this.

# the knitr::kable function produces nicer tables
kable(sjstats::anova_stats(fit.1))

etasqpartial.etasqomegasqpartial.omegasqepsilonsqcohens.fterm sumsqdf meansqstatisticp.valuepower
factora0.304 0.304 0.246 0.246 0.252 0.661 factora 233.8672 116.9335.895 0.008 0.874
1 NA NA NA NA NA NA Residuals535.60027 19.837 NA NA NA

The anova_stats function can work on either an anova object or one of class Anova. For
larger factorial designs, this would be an important way of obtaining effect sizes based on
differing SS Types that can be specified. In the above section, we passed the already-created
anova fit object to anova_stats, but we can also do the whole analysis in one line of code
using the car package Anova function to specify SS Type. For our example here, the Type 1
and Type 3 SS are identical because the design is balanced and Type 1 vs Type 3 should not
be relevant in a 1way design.

contrasts(hays$factora) <- contr.sum
# the knitr::kable function produces nicer tables
kable(sjstats::anova_stats(Anova(aov(dv~factora, data=hays), type=3)))

etasqpartial.etasqomegasqpartial.omegasqepsilonsqcohens.fterm sumsqdf meansqstatisticp.valuepower
factora0.304 0.304 0.246 0.246 0.252 0.661 factora 233.8672 116.9335.895 0.008 0.874
1 NA NA NA NA NA NA Residuals535.60027 19.837 NA NA NA

8.2.1 Use of the lsr package

Another option for effect size calculation is the etaSquared function from the lsr package. It
can take an argument that permits specification of SS Type, but that will not matter in this
balanced design.
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library(lsr)
#etaSquared(fit.1, type=1)
#etaSquared(fit.1, type=2)
lsr::etaSquared(fit.1, type=3)

eta.sq eta.sq.part
factora 0.3039335 0.3039335

8.3 Power and sample size planning for completely randomized
1-factor ANOVA designs

The pwr package provides a fairly comprehensive way to estimate sample size requirements
when designing studies. For a one-factor design, the logic of the code is very straight forward.
In other work, we have seen how to use GPower as well.

To use the pwr.anova.test funtion:

• We need to tell it how many groups.
• We need to have an estimate of the within-group std deviation (assumes homogeneity of

variance)
• We need to have a set of expected outcome values for the sample means. With these

means and the within-group variation (the sd), we can estimate cohen’s effect size statis-
tic (the “f”)

Since we have been working with a 3-group design, lets see how we might have planned for
that with the ‘pwr.anova.test’ function. I set the means and sd arbitrarily in this example -
they would normally be chosen on the basis of informed prior information, perhaps from pilot
studies or published literature.

It is instructive to “fiddle” with this code, changing the means and the sd to see how it affects
the desired n per group. This is an alternative to GPower.

#library(pwr)
groups = 3
means = c(25,20,20)
sd = 5
grand.mean = mean(means)
efsize = sqrt( sum( (1/groups) * (means-grand.mean)^2) ) /sd #cohen's "f" effect size
efsize

[1] 0.4714045
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pwr::pwr.anova.test(k = groups,
n = NULL,
f = efsize,
sig.level = 0.05,
power = 0.90)

Balanced one-way analysis of variance power calculation

k = 3
n = 20.01726
f = 0.4714045

sig.level = 0.05
power = 0.9

NOTE: n is number in each group

This, and other pwr functions work by passing all but one of the relevant characteristics to the
function. By leaving out sample size, and passing alpha, power, and effect size, the minimal
sample size per group required to acheive that power is returned.
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9 Bayesian Inference for 1-way ANOVAs

There are several ways to approach Bayesian Inference, even for a simple design such as a 1way
ANOVA. Options exist both within and outside of the R ecosystem. This chapter does not
intend to be comprehensive in that regard. One approach that has gained some currency in
psychological research is the use of bayes factors as an element of evaluating hypotheses. That
is the focus taken here, using the BayesFactor package.

The emphasis on bayes factors here is not to be taken as a strong recommendation that
Bayesian inference for ANOVA should proceed that way. There are many opposing voices.
bayes factor usage has been criticised on a variety of grounds and it is beyond the scope of this
tutorial document to explore that discussion. One point of distinction is the characterization
of a bayes factor approach as too focused on hypotheses, rather than estimation. In that
regard alternatives exist, for example:

1. The bayesanova package (Kelter, 2022) avoids bayes factors and uses a different kind
of posterior index.

2. Fuloria has provided a tutorial on use of the bayesanova package.
3. Golicher has provided a tutorial on use of the rjags package for Bayesian Anova.

9.1 A BayesFactor approach to Oneway ANOVA

This section provides simple code to extract a bayes factor for the omnibus model and then
attempts to demonstrate a way to evaluate contrasts within that model.

Initially, using the BayesFactor package of Morey et. al. (Morey & Rouder, 2018), we can
use their default anovaBF approach. In order to set up the analysis for contrasts that are done
below, the contrast for “factora” is re-specified here as the standard orthogonal set used above.
This BayesFactor approach is the alternative to the “fit.1” model used above.

The ‘anovaBF’ default approach is to compare the full model to the intercept-only model.
A Jeffries prior is used for in the default approach of the anovaBF function for hypothetical
population means and variances. Some control over the characteristics of the prior distribution
is possible in anovaBF, but that is beyond the scope of this document. Readers are urged to
begin with the help pages for the BayesFactor package and the anovaBF function.
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#library(BayesFactor)
#set contrasts for factora to the orthogonal set
contrasts.factora <- matrix(c(2,-1,-1, 0,1,-1),ncol=2)
contrasts(hays$factora) <- contrasts.factora
#contrasts(factora)
BayesFactor::anovaBF(dv~factora, data=hays)

Bayes factor analysis
--------------
[1] factora : 6.926757 ±0.01%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

This indicates some evidence against the null, roughly 7 times the evidence for the null. It is
not a strikingly strong degree of evidence.

9.2 Analytical Contrasts and BayesFactor

A direct BF approach to individual contrasts with the BayesFactor doesn’t appear to be
available. An alternative would be to use the ‘lmBF’ function on the analogous “lm” model.
However, ‘lmBF’ won’t work with IVs that are factors, so we will try to trick it. If we manually
code the contrasts as new variables in the data frame we can name those as IVs. I’ve created
a modified .csv file that has these new variables (ac1 and ac2). Read the new file and look at
the first few and last few lines:

hays3 <- read.csv("data/hays3.csv", stringsAsFactors=T)
knitr::kable(psych::headTail(hays3))

factora dv ac1 ac2
1 control 27 2 0
2 control 28 2 0
3 control 33 2 0
4 control 19 2 0
… NA … … …
27 slow 22 -1 -1
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factora dv ac1 ac2
28 slow 17 -1 -1
29 slow 20 -1 -1
30 slow 23 -1 -1

The lmBF function allows us to evaluate those models and to compare them. The substantially
larger Bayes Factor for the ac1-only model indicates it is a better fit. This is because (as we
know), the means of the 2nd and 3rd groups are so close so we don’t really need that second
vector in the model.

lmbf.full <- BayesFactor::lmBF(dv~ac1+ac2, data=hays3)
lmbf.ac1 <- BayesFactor::lmBF(dv~ac1, data=hays3)
#lmbf.ac2 <- BayesFactor::lmBF(dv~ac2, data=hays3)
#lmbf.full
#lmbf.ac1
ful_vs_ac1 <- c(lmbf.full,lmbf.ac1)
ful_vs_ac1

Bayes factor analysis
--------------
[1] ac1 + ac2 : 6.959137 ±0%
[2] ac1 : 20.4168 ±0%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

A different function from the same package permits direct comparison of all regression models
for a given set of IVs. It gives results that mirror what we saw above.

BayesFactor::generalTestBF(dv~ac1+ac2, data=hays3, whichModels="all")

Bayes factor analysis
--------------
[1] ac1 : 20.4168 ±0%
[2] ac2 : 0.3530796 ±0%
[3] ac1 + ac2 : 6.959137 ±0%

Against denominator:

106



Intercept only
---
Bayes factor type: BFlinearModel, JZS

To use this approach, it is recommended that the student explore a good bit more background
on use of bayes factor approaches. The detailed treatment of this method is beyond the bounds
of the 511 class.

One can also examine considerable online help from Morey and others on the BayesFactor
package:

Morey on BayesFactor
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10 Robust Methods and Resampling Methods

Violations of assumptions can wreak havoc with the standard methods of ANOVA, leading to
increases in Type I error rate. Wilcox (2016) has reviewed the literature on this and concludes
that researchers have been systematically taught, in error, that the standard parametric meth-
ods are often resistant to violations of assumptions. He argues, in a compelling fashion, that
the standard approach of evaluating assumptions with inferential tests (e.g., levene test for
homogeneity of variance, and various tests for non-normality) are underpowered for sample
sizes that are common in much research. Reliance on the “non-significance” of such tests
leads to flawed application of the standard inferential methods such as the omnibus F test
employed in ANOVA. Two general approaches, sometimes intertwined, are available in light of
this perspective. Robust methods often employ alternative statistics for estimation done with
essential descriptive statistics such as means and standard deviations and employ them in anal-
yses. A large class of modified central tendency estimators can be employed. The second class
of alternative methods are the resampling methods that we have covered elsewhere. In this
chapter, a few examples will be shown for the application of both classes of these methods.

10.1 Robust statistics and 1-way ANOVA

Wilcox has implemented an easy to use suite of tools in an R package for Robust Methods
(Mair & Wilcox, 2018). Some background in concepts of robust central tendency estimators is
useful in fully understanding the approaches - such methods as trimming, and winsorizing. The
function operates by doing 20% trimming for computation of the location indices, by default
and then employs the Welch F method seen above. An effect size statistic is also obtained

WRS2::t1way(formula = dv~factora, data = hays)

Call:
WRS2::t1way(formula = dv ~ factora, data = hays)

Test statistic: F = 8.1743
Degrees of freedom 1: 2
Degrees of freedom 2: 9.65
p-value: 0.00838
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Explanatory measure of effect size: 0.68
Bootstrap CI: [0.35; 1.11]

Pairwise multiple comparisons can also be performed, on these trimmed means, with a correc-
tion for error rate inflation built in.

WRS2::lincon(formula = dv~factora, data = hays)

Call:
WRS2::lincon(formula = dv ~ factora, data = hays)

psihat ci.lower ci.upper p.value
control vs. fast 7.16667 1.57906 12.75427 0.01221
control vs. slow 5.33333 0.98750 9.67916 0.01221
fast vs. slow -1.83333 -7.15661 3.48994 0.34025

For both functions, control of the degree of trimming can be implemented with the “tr” argu-
ment (results not shown).

WRS2::t1way(formula = dv~factora, data = hays, tr=.10)

Call:
WRS2::t1way(formula = dv ~ factora, data = hays, tr = 0.1)

Test statistic: F = 4.3376
Degrees of freedom 1: 2
Degrees of freedom 2: 12.02
p-value: 0.03817

Explanatory measure of effect size: 0.65
Bootstrap CI: [0.32; 0.97]

WRS2::lincon(formula = dv~factora, data = hays, tr=.10)

Call:
WRS2::lincon(formula = dv ~ factora, data = hays, tr = 0.1)

psihat ci.lower ci.upper p.value
control vs. fast 6.500 -0.50481 13.50481 0.05124
control vs. slow 5.375 0.04328 10.70672 0.05124
fast vs. slow -1.125 -7.21691 4.96691 0.60863
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The med1way function from WRS2 performs a 1-way

WRS2::med1way(formula = dv~factora, data = hays, iter=1000)

Call:
WRS2::med1way(formula = dv ~ factora, data = hays, iter = 1000)

Test statistic F: 1.3439
Critical value: 1.2377
p-value: 0.046

10.2 Resampling methods: Permutation testing

I have been using the lmPerm package for permutation tests. Unfortunately the source code
has been moved into the CRAN archive for unsupported packages. It is, nontheless, accessible.
Follow these steps

1. Download the file lmPerm_1.1-2.tar.gz from , and save it to a convenient place on your
local machine.

2. MS Windows users may need to install RTools from . Mac and Linux users can skip this
step.

3. Do install.packages(file.choose(), repos=NULL, type=“source”)

The aovp function is simple. Its defaults

#library(lmPerm)
#library(multcomp)
set.seed(15) # so that reruns of this produce the same outcome as seen here
fit <- lmPerm::aovp(dv~factora, data=hays, perm="Prob")

[1] "Settings: unique SS "

anova(fit)

Analysis of Variance Table

Response: dv
Df R Sum Sq R Mean Sq Iter Pr(Prob)

factora 2 233.87 116.933 5000 0.002 **
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Residuals 27 535.60 19.837
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively…..

#library(coin)
coin::independence_test(dv ~ factora,

data = hays)

Asymptotic General Independence Test

data: dv by factora (control, fast, slow)
maxT = 2.9574, p-value = 0.008792
alternative hypothesis: two.sided

Pairwise comparisons….

#library(rcompanion)
ppairs <- rcompanion::pairwisePermutationTest(dv ~ factora,

data = hays,
method="fdr")

ppairs

Comparison Stat p.value p.adjust
1 control - fast = 0 2.334 0.01958 0.02937
2 control - slow = 0 2.576 0.009982 0.02937
3 fast - slow = 0 -0.336 0.7369 0.73690

Or organized another way:

ppm <- rcompanion::pairwisePermutationMatrix(dv ~ factora,
data = hays,
method="fdr")

ppm
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$Unadjusted
control fast slow

control NA 0.01958 0.009982
fast NA NA 0.736900
slow NA NA NA

$Method
[1] "fdr"

$Adjusted
control fast slow

control 1.00000 0.02937 0.02937
fast 0.02937 1.00000 0.73690
slow 0.02937 0.73690 1.00000

10.3 Resampling methods: Bootstrapping

This section briefly reviews implementation of bootstrapping capability from two different R
packages, WRS2 and lmboot.

10.3.1 Percentile t boostrapping along with robust mean estimation.

Wilcox recommends a percentile t method of bootstrapping for 1way ANOVA (Wilcox, 2016).
This is implemented with the t1waybt function which also permits specification of the amount
of trimming for means, thus adding a further robustness feature to the analysis. This method is
appropriate when either (or both) heteroscedasticity and non-normality are present. The vari-
ance explained is a proportion of variance and the Effect size is a cohen’s f value. These value
will differ from what was obtained previously, because of the trimming and the bootstrapping
for error terms.

WRS2::t1waybt(dv~factora,tr=.2,nboot=800, data=hays)

Warning in WRS2::t1waybt(dv ~ factora, tr = 0.2, nboot = 800, data = hays):
Some bootstrap estimates of the test statistic could not be computed.

Call:
WRS2::t1waybt(formula = dv ~ factora, data = hays, tr = 0.2,

nboot = 800)

Effective number of bootstrap samples was 796.
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Test statistic: 8.1743
p-value: 0.01382
Variance explained: 0.466
Effect size: 0.683

The user can employ another WRS2 function, mcppb20, to do pairwise post hoc tests com-
paring pairs of groups within the bootstrapping and trimming framework:

WRS2::mcppb20(dv~factora,tr=.2,nboot=800, data=hays)

Call:
WRS2::mcppb20(formula = dv ~ factora, data = hays, tr = 0.2,

nboot = 800)

psihat ci.lower ci.upper p-value
control vs. fast 7.16667 0.33333 12.33333 0.0150
control vs. slow 5.33333 1.16667 10.16667 0.0025
fast vs. slow -1.83333 -6.16667 3.66667 0.4575

10.4 Residual/Wild Bootsrapping

The lmboot package provides a function to implement Residual/Wild bootstrapping, which
is recommended for models with heteroscedasticity. The simple output is only the p-value for
the test of the single IV in 1way ANOVA. The modeling is based on Type I SS by default
and cannot be changed. I rerun the base model so that the results can be compared. The
ANOVA.boot function permits specification of both a seed that helps with reproducibility within
this document, and number of bootstrap samples (“B”).

#library(lmboot)
anova(aov(dv~factora, data=hays))

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 233.87 116.933 5.8947 0.007513 **
Residuals 27 535.60 19.837
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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boot1 <- lmboot::ANOVA.boot(dv~factora, data=hays, seed=1234, B=5000)
boot1$`p-values` #bootstrap p-values for 1-way model

[1] 0.0058
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11 Nonparametric approaches to 1-way
ANOVA problems

Non-parametric statistics had, for many decades, been a preferred choice when distributional
assumptions are not met for parametric tests (normality assumption), along with scale trans-
formation methods. Nonparametric methods employ a transformation of the DV to ranks and
then inferences are made using the ranking values. For tests of group differences such as the
independent samples situation (2 sample t-test), or a multiway oneway layout such as the 1way
ANOVA models, the parametric tests are understood to be tests of hypotheses about popula-
tion means. It is important to remember that for the non-parametric analogs, the hypotheses
are “location” hypotheses, not narrowly tied to means and also not explicit hypotheses about
medians, a mistake that is often made. These tests may also still be sensitive to assumptions
regarding dispersion, so should not be considered as alternatives when the homogeneity of
within-group variance assumptions are violated.

More recent developments such as permutation tests and bootstrapping are alternative ways of
doing inferences when normality assumptions are violated. Their usage has increased, relative
to the nonparametric tests, because of the change in computational power of modern computers.
Robust methods are often combined with bootstrapping (Wilcox, 2016).

A good general reference for non-parametric methods is the textbook by Hollander, Wolfe, and
Chicken (2013).

11.1 The Kruskal-Wallis Test for the 1way layout

The Kruskall-Wallis test is a well-accepted method for doing an omnibus 1way nonparamet-
ric analysis. It is implemented in several places in R, including this base system function,
kruskal.test. The implementation uses the standard model formula approach and produces
a test statistic that uses the Chi-squared distribution, where df are #groups minus one.

kruskal.test(hays$dv~hays$factora)

Kruskal-Wallis rank sum test
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data: hays$dv by hays$factora
Kruskal-Wallis chi-squared = 8.1309, df = 2, p-value = 0.01716

11.2 Follow ups to Kruskal

One method of following up an omnibus Kruskal-Wallis test is to compare pairs of groups using
the Wilcoxon rank sum test (same as Mann-Whitney U test). This is somewhat like using
multiple t-tests to follow up a 1way ANOVA, a method that is not recommended. However
in the non-parametric situation this is one recommended approach, as long as corrections for
error-rate inflation are employed. The pairwise.wilcox.test will do just such analyses of
all possible pairs of groups. It implements the p.adjust method seen in an earlier section of
this document, permitting p value adjustments for multiple comparison based Type I error
inflation. The warning just means that the p values are approximated since the algorithm
for handling ties produces an inability to produce exact calculations - and is an accepted
outcome.

pairwise.wilcox.test(hays$dv,hays$factora, p.adjust.method="BH")

Pairwise comparisons using Wilcoxon rank sum test with continuity correction

data: hays$dv and hays$factora

control fast
fast 0.042 -
slow 0.030 0.447

P value adjustment method: BH

# Adjusts p-values for multiple comparisons;
# See ?p.adjust for options

11.3 A test by Dunn for comparing pairs of groups

Alternatively the dunn.test function from the dunn.test does both the omnibus test as a
kruskal-wallis test and uses Dunn’s method of pairwise comparisons that also permits p-value
adjustment for multiple comparisons. Note that the p values are not the same for the three
comparisons as found above with pairwise.wilcox.test. This is because the Dunn test takes
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a slightly different approach. One tricky part of using dunn.test is that the returned p values
are one-tailed and should be compared to the chosen alpha rate/2.

dunn.test::dunn.test(hays$dv, hays$factora, method="BH")

Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 8.1309, df = 2, p-value = 0.02

Comparison of x by group
(Benjamini-Hochberg)

Col Mean-|
Row Mean | control fast
---------+----------------------

fast | 2.647794
| 0.0122*
|

slow | 2.240441 -0.407353
| 0.0188* 0.3419

alpha = 0.05
Reject Ho if p <= alpha/2

# Adjusts p-values for multiple comparisons
# See ?dunnTest for other options for p value adjustments
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12 Unequal Sample Sizes

The presence of unequal samples sizes has major implications in factorial designs that require
care in choice of SS decomposition types (e.g., Type I vs II, vs III). For 1-way layouts, the
impact is more minimal. However, there are some things to be aware of, particularly with
regard to use of contrasts, and this chapter addresses those issues.

The critical starting point in understanding why the issue arises with contrasts (even “orthog-
onal” ones), is to know that when a design is unbalanced (unequal n’s), the coding vectors
(when applied to all cases) are not completely uncorrelated. Thus the regression modeling is
not clean. It has to cope with correlated IVs and this is where the Type I, II, and III SS issues
come into play.

12.1 Import the data and Describe

We can use the same original data set from earlier parts of this tutorial, the “hays” data set.
However, I randomly deleted five cases from that data set, two from the control group, one
from the fast group, and three from the slow group. The data are in a .csv file that is read
here.

hays_unbal <- read.csv("data/hays_unequal.csv",stringsAsFactors=TRUE)

The descriptive statistics show that the three means differ a small amount from their original
values in the equal-sample-size illustrations above, but not radically so.

psych::describeBy(hays_unbal$dv, group=hays_unbal$factora, type=2)

Descriptive statistics by group
group: control

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 8 26.62 5.32 26.5 26.62 4.45 19 36 17 0.32 0.37 1.88
------------------------------------------------------------
group: fast

vars n mean sd median trimmed mad min max range skew kurtosis se
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X1 1 9 20.33 4.69 19 20.33 4.45 15 30 15 1.03 1.05 1.56
------------------------------------------------------------
group: slow

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 7 22.43 1.51 23 22.43 1.48 20 24 4 -0.62 -0.81 0.57

We can visualize the data set with this multiple-panel graph produced in ggplot.

# Modeled after https://dmyee.files.wordpress.com/2016/03/advancedggplot.pdf
#Histograms of DV by Shelf
#library("RColorBrewer")
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73",

"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
p1<-ggplot2::ggplot(data = hays_unbal, aes(x = dv, fill=factora)) +
geom_histogram(binwidth = .1) +
scale_fill_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +
#scale_colour_grey() + scale_fill_grey() +
xlab("Rating") + ylab("Count") +
ggtitle("Histograms, by Factor A") +
theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Boxplots of "Healthiness" Rating" by factora
p2<-ggplot2::ggplot(data = hays_unbal, aes(x = factora, y = dv, fill=factora)) +
geom_boxplot() +xlab("Factor A") + ylab("Rating") +
scale_fill_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +
#scale_colour_grey() + scale_fill_grey() +
ggtitle("Boxplots of DV by Factor A") +
theme_minimal() +
theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Violin plots of "Healthiness" Rating" by factora
p3<-ggplot2::ggplot(data = hays_unbal, aes(x = factora, y = dv, fill=factora)) +
geom_violin(alpha=.25, color="gray") +
geom_jitter(alpha=.5, aes(color=factora), position=position_jitter(width=0.3)) +
scale_fill_manual(values=cbPalette) + scale_colour_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +

#scale_colour_grey() + scale_fill_grey() +
coord_flip() +
xlab("Factor A") + ylab("DV") +
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ggtitle("Violin plots of DV by Shelf") +
theme_minimal() +theme(plot.title = element_text(size=10, face = "bold", hjust = 1))

# Creating a matrix that defines the layout
# (not all graphs need to take up the same space)
lay <- rbind(c(1,2),c(3,3))# Plotting the plots on a grid
gridExtra::grid.arrange(p1, p2, p3, ncol=2, layout_matrix=lay)
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12.2 Fit the model with aov

The omnibus ANOVA model can be fit with aov in the previously defined manner, and an
omnibus F test is returned.

fit1_unbal <- aov(dv~factora, data=hays_unbal)
anova(fit1_unbal)

Analysis of Variance Table
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Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 171.37 85.685 4.6425 0.0214 *
Residuals 21 387.59 18.457
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is useful to recall that aov is a wrapper for the lm function and thus requires the IV to
be a factor so that coding vectors (contrasts) can be produced. Let’s recall what the default
contrasts are for a factor. The are dummy or indicator codes. Thus two coding vectors are
available for this three-level factor.

contrasts(hays_unbal$factora)

fast slow
control 0 0
fast 1 0
slow 0 1

Next we can change the coding scheme to effect, or deviation, coding.

contrasts(hays_unbal$factora) <- contr.sum
contrasts(hays_unbal$factora)

[,1] [,2]
control 1 0
fast 0 1
slow -1 -1

A rerun of the omnibus F test reveals that this change in coding scheme does not produce a
different F value. This was what should have been expected.

fit2_unbal <- aov(dv~factora, data=hays_unbal)
anova(fit2_unbal)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 171.37 85.685 4.6425 0.0214 *
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Residuals 21 387.59 18.457
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we want to change our coding scheme to an orthogonal contrast set, we need to define those
contrasts first in a matrix, and then assign that matrix to the contrasts used for the factor.
This process is identical to that used in earlier sections of this document. This would be what
we called the “helmert” set. (But note that R has a built-in helmert set that if we had used
it would have actually looked like what we called reverse helmert, so I did not use it here.)

contr_special <- matrix(c(1,-.5,-.5,0,1,-1), ncol=2)
contrasts(hays_unbal$factora) <- contr_special
contrasts(hays_unbal$factora)

[,1] [,2]
control 1.0 0
fast -0.5 1
slow -0.5 -1

Next, a refit of the omnibus model will use these analytical/orthogonal contrasts. This change
in coding scheme also resulted in the same omnibus F as the prior two model fits. It should be
reassuring that all three approaches produce the same outcome - they are just different (but
effective) ways of coding for group membership.

fit3_unbal <- aov(dv~factora, data=hays_unbal)
anova(fit3_unbal)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

factora 2 171.37 85.685 4.6425 0.0214 *
Residuals 21 387.59 18.457
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now that the basics of the omnibus F test are established to behave the same way in unbalanced
designs as is the case with equal-N designs, we can move on to the question of partitioning the
SSBG into contrast components and doing inferences about those contrasts.
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12.3 Evaluate Analytical/Orthogonal/SingleDF contrasts

This illustration will utilized the analytical/orthogonal/singleDF contrasts just put in place
above, but the message will be the same for the two other coding schemes.

The first way we have approached the assessment of contrasts is to use the “split” argument
in the summary function, as applied to the aov fit object. This produces the SS partitioning
and provides F tests for the two single df contrasts as well as the omnibus 2df effect. Note
that the SS for the two contrasts sum to the SSBG value.

summary(fit3_unbal,
split = list(factora = list(ac1 = 1, ac2 = 2)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 171.4 85.68 4.642 0.02140 *
factora: ac1 1 154.1 154.08 8.348 0.00877 **
factora: ac2 1 17.3 17.29 0.937 0.34418

Residuals 21 387.6 18.46
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Another way we saw to obtain inferential tests for contrasts was to test the regression coef-
ficients created by the aov function. They can be obtained with the summary.lm function
applied to the aov object since aov is merely a wrapper for lm.

In the work with the balanced design analyzed in earlier chapters of this document, we saw
that we could square the t values for the tests of the two orthogonal contrasts and obtain the
F values produced by the “split argument” used just above.

coefficients <- summary.lm(fit3_unbal)
coefficients

Call:
aov(formula = dv ~ factora, data = hays_unbal)

Residuals:
Min 1Q Median 3Q Max

-7.6250 -2.3571 -0.0268 1.8437 9.6667

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 23.1290 0.8816 26.236 <2e-16 ***
factora1 3.4960 1.2435 2.812 0.0105 *
factora2 -1.0476 1.0825 -0.968 0.3442
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.296 on 21 degrees of freedom
Multiple R-squared: 0.3066, Adjusted R-squared: 0.2405
F-statistic: 4.642 on 2 and 21 DF, p-value: 0.0214

So, let’s extract the t value from the coefficients table and square them. We find that the
squared t for the second contrast does equal the F from the “split” table above, but the first
does not - the first is smaller than the one tabled in the “split” derived F table.

t_ac1 <- coefficients$coefficients[2,3]
t_ac2 <- coefficients$coefficients[3,3]
tvals <- c(t_ac1, t_ac2)
tvals

[1] 2.8115374 -0.9677595

tvals^2

[1] 7.9047423 0.9365584

At this point, we have two competing approaches to inference and we will need to understand
them a bit better. But first, we should obtain the tests of the contrasts provided by the em-
means package and function, and compare. We see that the t-tests produced by the contrast
function applied to an emmeans object are identical to those produced the the summary.lm func-
tion above and thus different from the F test of the first contrast found in the table produced
by the “split” version of the summary function.

fit3_unbal.emm.a <- emmeans::emmeans(fit3_unbal, "factora", data=hays_unbal)
lincombs2 <- contrast(fit3_unbal.emm.a,

list(ac1=c(1,-.5,-.5), ac2=c(0,1,-1))) # second one not changed
emmeans::test(lincombs2, adjust="none")

contrast estimate SE df t.ratio p.value
ac1 5.24 1.87 21 2.812 0.0105
ac2 -2.10 2.17 21 -0.968 0.3442
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#confint(lincombs2, adjust="none")

12.4 What is the source of the discrepancy?

The short answer to the question of the origin of this discrepancy is the difference between
type I and type III SS that are employed by the two different approaches. But to illustrate
this more completely, lets examine two other variables that were placed in the “unbalanced”
data frame. The same two orthogonal contrasts were manually created and added as variables
into the data frame.

gt::gt(hays_unbal)

id dv factora ac1 ac2
1 27 control 1.0 0
4 19 control 1.0 0
5 25 control 1.0 0
6 29 control 1.0 0
7 36 control 1.0 0
8 30 control 1.0 0
9 26 control 1.0 0

10 21 control 1.0 0
11 23 fast -0.5 1
12 22 fast -0.5 1
13 18 fast -0.5 1
14 15 fast -0.5 1
16 30 fast -0.5 1
17 23 fast -0.5 1
18 16 fast -0.5 1
19 19 fast -0.5 1
20 17 fast -0.5 1
21 23 slow -0.5 -1
22 24 slow -0.5 -1
23 21 slow -0.5 -1
26 24 slow -0.5 -1
27 22 slow -0.5 -1
29 20 slow -0.5 -1
30 23 slow -0.5 -1
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Now that we have the fully instantiated coding vectors at our disposal, we can verfy the non-
orthogonality of the set simply by examining the Pearson product moment correlation between
the two vectors. The non-zero correlation means that we do not have a fully orthogonal set,
even though the correlation is small. The redundant/overlapping/shared variance that the
two IVs have in the DV must be rectified in our analyses.

cor(hays_unbal$ac1, hays_unbal$ac2)

[1] -0.07254763

Now, we can fit the object using lm and control the order of entry of the coding vectors into
the regression model. Note that the same omnibus F and multiple R squared are returned
as with the aov modeling above. In addition, the regression coefficients and their t-tests are
also identical to those produced with summary.lm on the aov object above and identical to the
t-tests produced with the emmeans approach used above. These inferential tests are utilizing
a method that is equivalent to employing type III SS in F tests. We can explore that below.

fit4_unbal.lm <- lm(dv~ac1+ac2, data=hays_unbal)
summary(fit4_unbal.lm)

Call:
lm(formula = dv ~ ac1 + ac2, data = hays_unbal)

Residuals:
Min 1Q Median 3Q Max

-7.6250 -2.3571 -0.0268 1.8437 9.6667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.1290 0.8816 26.236 <2e-16 ***
ac1 3.4960 1.2435 2.812 0.0105 *
ac2 -1.0476 1.0825 -0.968 0.3442
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.296 on 21 degrees of freedom
Multiple R-squared: 0.3066, Adjusted R-squared: 0.2405
F-statistic: 4.642 on 2 and 21 DF, p-value: 0.0214
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fit5_unbal.lm <- lm(dv~ac2+ac1, data=hays_unbal)
summary(fit5_unbal.lm)

Call:
lm(formula = dv ~ ac2 + ac1, data = hays_unbal)

Residuals:
Min 1Q Median 3Q Max

-7.6250 -2.3571 -0.0268 1.8437 9.6667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.1290 0.8816 26.236 <2e-16 ***
ac2 -1.0476 1.0825 -0.968 0.3442
ac1 3.4960 1.2435 2.812 0.0105 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.296 on 21 degrees of freedom
Multiple R-squared: 0.3066, Adjusted R-squared: 0.2405
F-statistic: 4.642 on 2 and 21 DF, p-value: 0.0214

In order to understand the distinctions between type I and type III SS, lets begin with the
Anova function from the car package. Initially, we obtain F values based on Type III SS.
Notice that the F values, for both orders of IV entry, are identical to the squares of the t
values from the tests of the regression coefficients seen above.

car::Anova(fit4_unbal.lm, type=3)

Anova Table (Type III tests)

Response: dv
Sum Sq Df F value Pr(>F)

(Intercept) 12704.3 1 688.3348 < 2e-16 ***
ac1 145.9 1 7.9047 0.01046 *
ac2 17.3 1 0.9366 0.34418
Residuals 387.6 21
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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car::Anova(fit5_unbal.lm, type=3)

Anova Table (Type III tests)

Response: dv
Sum Sq Df F value Pr(>F)

(Intercept) 12704.3 1 688.3348 < 2e-16 ***
ac2 17.3 1 0.9366 0.34418
ac1 145.9 1 7.9047 0.01046 *
Residuals 387.6 21
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we can switch the “type” specification to type I SS by using the anova function from
base R.

anova(fit4_unbal.lm)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

ac1 1 154.08 154.083 8.3484 0.008774 **
ac2 1 17.29 17.286 0.9366 0.344179
Residuals 21 387.59 18.457
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fit5_unbal.lm)

Analysis of Variance Table

Response: dv
Df Sum Sq Mean Sq F value Pr(>F)

ac2 1 25.47 25.474 1.3802 0.25321
ac1 1 145.89 145.895 7.9047 0.01046 *
Residuals 21 387.59 18.457
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The first thing to notice from these analyses is that the two F test are both different when the
models with opposite entry orders of the vectors are compared. For Type I SS, the effect of
each IV is evaluated at the point at which it enters the equation, not adjusted for the presence
of correlated IVs that are entered later.

A second thing to notice is that the F value for the second term to enter these two models
match what was obtained by Type III SS just above, using Anova. This is because in this
simple 2-IV model, the second vector entered is always adjusted for “all” other IVs, and this
defines the Type III SS methodology: treat each vector as if it were the last to enter the
equation.

A final comparison to make is to examine which F tests from the above four analyses match
the F tests produced with the “split” approach used above, and repeated here for convenience.
Notice here, that the F values match what we just examined above with the model where
ac1 was entered first, but not the model where ac2 was ordered first. This implies that the
“split” approach takes the first defined contrast as the first vector to enter the equation and the
second, second, and so forth if there are additional vectors. We have reached the conclusion
that the “split” approach utilizes TYPE I SS.

summary(fit3_unbal,
split = list(factora = list(ac1 = 1, ac2 = 2)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 171.4 85.68 4.642 0.02140 *
factora: ac1 1 154.1 154.08 8.348 0.00877 **
factora: ac2 1 17.3 17.29 0.937 0.34418

Residuals 21 387.6 18.46
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Can we force the opposite ordering by a trick of what we call what on the “split” argument?
No. Switching this does not change the outcome, it just changes to order of listing in the
table.

summary(fit3_unbal,
split = list(factora = list(ac1 = 2, ac2 = 1)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 171.4 85.68 4.642 0.02140 *
factora: ac1 1 17.3 17.29 0.937 0.34418
factora: ac2 1 154.1 154.08 8.348 0.00877 **

Residuals 21 387.6 18.46
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In order to change the F values to the Type I SS seen with the opposite ordering model and
using aov, we would have to switch the order of contrasts in the original definition.

contr_special2 <- matrix(c(0,1,-1,1,-.5,-.5), ncol=2)
contrasts(hays_unbal$factora) <- contr_special2
contrasts(hays_unbal$factora)

[,1] [,2]
control 0 1.0
fast 1 -0.5
slow -1 -0.5

Now, refitting the model should produce the second table of F values seen above with the
anova function applied to the lm object.

fit3b_unbal.aov <- aov(dv~factora, data=hays_unbal)
summary(fit3b_unbal.aov,

split = list(factora = list(ac1 = 1, ac2 = 2)))

Df Sum Sq Mean Sq F value Pr(>F)
factora 2 171.4 85.68 4.642 0.0214 *
factora: ac1 1 25.5 25.47 1.380 0.2532
factora: ac2 1 145.9 145.89 7.905 0.0105 *

Residuals 21 387.6 18.46
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

12.5 Commentary and Conclusions

This demonstration reflects many of the perspectives developed on Type I and III SS in the
tutorial document on dong Basic Multiple Regression and Linear modeling. It reinforces the
notion that the researcher must be careful in delineating why certain methods are preferred
and understand the implications of varying choices among those methods. This document
focused only on Type I and III SS distinctions because the Type II SS is only a relevant
concept for factorial designs.
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I have not seen any textbooks that emphasize the impact of non-orthogonality on contrast
analysis in a one-way design. The exposition here may be unique. Textbooks most commonly
focus on the impact of unequal N in factorial designs and examine the Type I, II and III
distinctions in regard to lower order effects such as main effects. We will have to return to
this conversation at that point.

A final point is the reiteration that the emmeans approach to executing analytical contrasts
is employing a Type III SS approach for orthogonal sets. This is the most commonly used
method for experimental designs and is an important aspect of the application of emmeans
to larger/factorial designs.

Recommendation:

The common recommendation for use of Type III SS in factorial designs relates to the fact
that testing lower order effects with Type III SS is tantamount to testing null hypotheses
about unweighted marginal means. This is a defensible approach for true experiments where
the unequalness of sample sizes does not reflect population stratification. However, it oneway
designs, this issue does not occur, except partially when groups are “combined” with contrats
which pit their values against other groups. But there is a, perhaps, more important way of
looking at the Type I/III distinction for contrasts in oneway designs. That is the idea that
even within orthogonal sets, there are probably a-priori hypotheses that drive contrast choice
for some but not all contrasts. The idea would be that the most important, a-priori, contrasts
could be tested first by creating the design matrix with the where order of the vectors is deter-
mined by their a-priori importance. Then, a Type I SS approach might be more appropriate.
Allow the most important hypotheses to absorb SS for the DV in a manner unadjusted by
other less important contrasts. This kind of discussion is also absent in textbooks.
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13 A Larger Design and Trend Analysis

In order to expand the 1way ANOVA illustrations in this document, this chapter uses a different
data set that permits implementation of trend analysis and incorporates an unequal sample size
design. The data set comes from a laboratory study of ethanol effects on behavioral activity
of mice (Data from B. Dudek). It is a dose-response study that is a completely randomized
design with four doses of alcohol plus a control group. This chapter does a full analysis of this
data set, employing many of the methods outlined in earlier chapters. Evaluation of the shape
of the does response function is addressed with the use of Orthogonal Polynomial contrasts.

13.1 Import and process the data

In this data set, the DV is average mouse running speed (cm/sec, called speed15) in a fif-
teen minute test in an enclosed activity monitoring apparatus. The independent variable is
called dose and has five levels: saline/control, 1.0, 1.5, 2.0, and 2.5 g/kg ethanol doses. The
expectation was that lower doses would dis-inhibit behavior (more/faster running in the test
apparatus) and then higher doses would begin to depress or sedate behavior, producing a
biphasic dose response function. Total sample size was N=234 mice randomly assigned to the
five conditions.

# read data from mouse alcohol/activity data set used earlier for the SPSS illustration
# data file is mouse_alcohol_doseresponse2b.csv
#mouse <- read.csv(file.choose(), stringsAsFactors=T)
mouse <- read.csv("data/mouse_alcohol_doseresponse2b.csv", stringsAsFactors = TRUE)
str(mouse)

'data.frame': 234 obs. of 2 variables:
$ dose : Factor w/ 5 levels "1 g/kg","1.5 g/kg",..: 5 1 5 1 3 3 3 3 4 5 ...
$ speed15: num 9.76 13.35 10.72 13.56 14.22 ...

head(mouse)

dose speed15
1 SALINE 9.762282
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2 1 g/kg 13.351472
3 SALINE 10.724117
4 1 g/kg 13.560831
5 2 g/kg 14.222366
6 2 g/kg 15.052335

The characteristics of the “dose” variable create an issue for use as a factor in aov and lm
models. This is because the nominal labels are alphabetically ordered and the control group
is the last in that order (numbers come first in alphabetical ordering)

levels(mouse$dose)

[1] "1 g/kg" "1.5 g/kg" "2 g/kg" "2.5 g/kg" "SALINE"

This ordering is not relevant for finding the omnibus F test in the aov or lm models but it will
create a problem for evaluation of the trend components which will assume increasing order
of the levels. Those levels were zero (called saline), 1, 1.5, 2, and 2.5 g/kg. We can change the
order of those levels for the dose factor with the ordered function. This will enable proper
use of the contr.poly specification for trend contrasts.

# force dose to be an ordered factor so that plots and tables maintain
# the correct order of the levels
mouse$dose <- ordered(mouse$dose,

levels=c("SALINE","1 g/kg","1.5 g/kg","2 g/kg","2.5 g/kg"))
levels(mouse$dose)

[1] "SALINE" "1 g/kg" "1.5 g/kg" "2 g/kg" "2.5 g/kg"

The original code for dose as a nominal variable/factor also creates problems for drawing line
graphs with dose as the X axis variable. So, a new variable, “edose” is created to be explicitly
numeric.

# create a new variable that is the quantitative scale that dose is expressed on
# this will be needed to draw line graphs
mouse[which(mouse$dose == "SALINE"),"edose"] <- 0
mouse[which(mouse$dose == "1 g/kg"),"edose"] <- 1
mouse[which(mouse$dose == "1.5 g/kg"),"edose"] <- 1.5
mouse[which(mouse$dose == "2 g/kg"),"edose"] <- 2
mouse[which(mouse$dose == "2.5 g/kg"),"edose"] <- 2.5
class(mouse$edose)
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[1] "numeric"

The attach function is used to simplify our code even though current best practices in R
recommend against using it. The downside of using it is not encountered in the illustrations
in this chapter. It makes code for the graphing functions simpler.

attach(mouse)

13.2 Exploratory Data Analysis: Numeric Summaries

Characteristics of the data set are initially explored with the describeBy function from psych.
We can see that the sample sizes per group are nearly equal. One additional characteristic
should be noted from this table. The standard deviations (and thus the variances) of the five
groups differ over two-fold. Close examination of the homogeneity assumption will further
evalauate this pattern.

# obtain descriptive statistics on the three groups using the psych package
tab1 <- psych::describeBy(speed15,dose,mat=T, digits=3,type=2)
row.names(tab1) <- NULL
gt::gt(tab1[2:15])

group1 vars n mean sd median trimmed mad min max range skew kurtosis se
SALINE 1 46 11.373 1.592 11.191 11.296 1.255 8.477 15.319 6.842 0.493 0.344 0.235
1 g/kg 1 47 14.576 1.906 13.824 14.420 1.429 11.539 19.826 8.288 0.861 0.298 0.278
1.5 g/kg 1 47 15.296 1.963 15.442 15.320 2.182 10.824 18.960 8.136 -0.185 -0.597 0.286
2 g/kg 1 47 15.629 1.832 15.766 15.649 1.499 10.735 20.594 9.858 -0.060 1.327 0.267
2.5 g/kg 1 47 13.116 3.487 13.422 13.098 4.711 6.997 20.088 13.091 0.021 -1.156 0.509

Note that since the sample sizes are not exactly equal, this will require choices between Type
I and Type III SS - covered extensively below.

13.3 Exploratory Data Analysis: Graphical exploration

A line graph with standard error bars is the expected summary figure for evaluation of dose-
response curves. Note that the code uses the “edose” variable that is numerically coded rather
than the original “dose” variable.
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# draw line graph using sciplot package
# difficult to get correct line graph with other R functions
# plotmeans and plotCI give nice graphs but X axis is not scaled as continuous
# lineplot.CI defaults to using std error bars, and the X axis is scaled properly
# error bars could be drawn as CI's if desired. See the help function on lineplot.CI
sciplot::lineplot.CI(edose,speed15,x.cont=T,

xlab="Ethanol Dose, g/kg",
ylab="Running Speed, cm/sec",
ylim=c(7,15.99))

# add axis break to indicate truncated axis
# axis.break, in the plotrix package, can add a double slaxh or zigzag
# axis break indicator to any open plot
plotrix::axis.break(2,7,style="zigzag")
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A boxplot can also be informative. The numeric “edose” variable is not needed here since
the X axis in the box plot is not scaled. Recall that the correct ordering of levels of the dose
variable occur because of the reording done above.

boxplot(speed15~dose,ylab="Running Speed, cm/sec",xlab=("Ethanol Dose, g/kg"))
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The ggplot2 package provides capabilities to produce plots that are publication quality. For
the type of graph desired here, a line graph with Std Error bars, it takes some work to generate
the plot. The ggplot function will not permit drawing the line graph of means +/- SEM’s
directly from the data frame containing the raw data. Instead, a new data frame must be
created, containing the summary statistics for each group. This is done with the summarySE
function from the Rmisc package. Once created, the summary data frame can be used by
ggplot. Here, we use the “edose” variable since it is a numeric variable.

mouse_summ <- Rmisc::summarySE(mouse,measurevar="speed15", groupvars="edose")
#str(mouse_summ)
# rename the column that contains the mean to something more less confusing
colnames(mouse_summ) <- c("edose", "N", "mean", "sd", "se", "95%ci" )
knitr::kable(mouse_summ)

edose N mean sd se 95%ci
0.0 46 11.37323 1.592286 0.2347698 0.4728507
1.0 47 14.57600 1.905680 0.2779720 0.5595286
1.5 47 15.29618 1.962592 0.2862734 0.5762384
2.0 47 15.62853 1.831644 0.2671728 0.5377909
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edose N mean sd se 95%ci
2.5 47 13.11634 3.487325 0.5086786 1.0239169

The critical elements in creating the ggplot graph are the first line, the geom_line specifica-
tion and the geom_errorbar specification. The remaining code controls text attributes and
aesthetic properties of the graph. Note that in the ggplot figure, there is not a simple way
to give the visual indicator that the Y axis has a break - the axis.break function does not
work in the ggplot environment. The break symbols could be manually added, but I didn’t
do that work here.

# now draw the plot
#win.graph() # or quartz() or x11()
ggplot(mouse_summ, aes(x=edose, y=mean)) +
expand_limits(y=c(5,18)) +
expand_limits(x=c(0,2.5)) +
scale_y_continuous(breaks=0:4*4) +
scale_x_continuous(breaks=0:5*.5) +
geom_line() + geom_point(size=2) +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se), colour="black", width=.1)+
xlab("Ethanol Dose (g/kg)")+
ylab("Mean Running Speed (cm/sec)")+
ggtitle("Alcohol Effects on Mouse Activity")+
theme_classic()+
theme(text = element_text(size=16))
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# code for bare minimum drawing of the line graph
#ggplot(mouse_summ, aes(x=edose, y=mean)) +
# geom_line() +
# geom_errorbar(aes(ymin=mean-se, ymax=mean+se), colour="black", width=.1)
detach(mouse)

13.4 Fit the base 1way aov model

The aov and lm functions require use of factors as IVs when performing analyses of variance.
Therefore, the original “dose” variable is used throughout. It is important that we ordered
the levels of that factor so that the orthononal polynomial trend contrasts properly match the
levels.

First, we fit the base omnibus mode.

# fit basic analysis of variance model using aov
fit1t.aov <- aov(speed15~dose, data=mouse)
#summary(fit1.aov)
anova(fit1t.aov)
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Analysis of Variance Table

Response: speed15
Df Sum Sq Mean Sq F value Pr(>F)

dose 4 573.28 143.321 28.002 < 2.2e-16 ***
Residuals 229 1172.08 5.118
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# to show that for a 1way design, SS TYPE changes don't
# affect the omnibus BG SS
Anova(fit1t.aov,type=3)

Anova Table (Type III tests)

Response: speed15
Sum Sq Df F value Pr(>F)

(Intercept) 45848 1 8957.719 < 2.2e-16 ***
dose 573 4 28.002 < 2.2e-16 ***
Residuals 1172 229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13.5 Find the effect size indicators for the dose effect.

Initially, use the anova_stats function to obtain several effect size indicators.

sjstats::anova_stats(fit1t.aov)

etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | term | sumsq | df | meansq | statistic | p.value | power
---------------------------------------------------------------------------------------------------------------------------------------------
0.328 | 0.328 | 0.316 | 0.316 | 0.317 | 0.699 | dose | 573.283 | 4 | 143.321 | 28.002 | < .001 | 1

| | | | | | Residuals | 1172.080 | 229 | 5.118 | | |

Next, use the etaSquared function from lsr.

#library(lsr)
#etaSquared(fit.1, type=1)
#etaSquared(fit.1, type=2)
lsr::etaSquared(fit1t.aov, type=3)
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eta.sq eta.sq.part
dose 0.3284605 0.3284605

13.6 Implement orthogonal trend analysis

Once we learn how to create the orthogonal polynomial trend coefficients, we can use the same
method as previously seen with the Hays data set to obtain SS and tests of those contrasts,
using ‘split’ inside the summary function. Or we can use the summary.lm function. Fortunately,
R has a built-in capability for orthogonal polynomials with the contr.poly function. It also
permits exact specification of the numerical levels/spacing of the IV in the instance where
levels of the quantitative IV are not equally spaced (as is our case here).

# now create the contrasts for trend analysis
# we need to define the contrasts based on an IV that
# has unequally spaced intervals
# by using the contr.poly function
# 5 levels with the IV values listed here
contrasts.dose <- contr.poly(5,scores=c(0,1,1.5,2,2.5))
contrasts(mouse$dose) <- contrasts.dose
contrasts(mouse$dose)

.L .Q .C ^4
SALINE -0.72782534 0.4907292 -0.1676525 0.03671115
1 g/kg -0.20795010 -0.4728845 0.6311625 -0.36711155
1.5 g/kg 0.05198752 -0.4595010 -0.2169621 0.73422310
2 g/kg 0.31192515 -0.1159905 -0.6213006 -0.55066732
2.5 g/kg 0.57186277 0.5576469 0.3747527 0.14684462

Parenthetically, note that if the levels of the dose variable were equally spaced the could could
simply have been the following. The contr.poly specifier does not even require parentheses
in this case.

# code not used since the levels in our illustration were not equally spaced.
contrasts.dose <- contr.poly
contrasts(mouse$dose) <- contrasts.dose
contrasts(mouse$dose)

.L .Q .C ^4
SALINE -0.72782534 0.4907292 -0.1676525 0.03671115
1 g/kg -0.20795010 -0.4728845 0.6311625 -0.36711155
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1.5 g/kg 0.05198752 -0.4595010 -0.2169621 0.73422310
2 g/kg 0.31192515 -0.1159905 -0.6213006 -0.55066732
2.5 g/kg 0.57186277 0.5576469 0.3747527 0.14684462

Next, we can fit the omnibus model again and then partition the trend SS and F tests inside
the summary function. This time, the orthogonal polynomial trend coefficients will be used for
the contrasts and tests of those contrasts will be provided using the split argument. Caution:
This example data set has unequal sample sizes, so these F tests are tests of TYPE I SS.

# note: summary with split on an aov object yields type I SS
# for these F tests
# use summary.lm, as below, to obtain Type III tests on either an
# aov object or directly on an lm object with summary.
fit2t.aov <- aov(speed15~dose, data=mouse)
summary(fit2t.aov,

split=list(dose=list(linear=1, quadratic=2, cubic=3,quartic=4)))

Df Sum Sq Mean Sq F value Pr(>F)
dose 4 573.3 143.3 28.002 < 2e-16 ***
dose: linear 1 157.7 157.7 30.808 7.85e-08 ***
dose: quadratic 1 377.1 377.1 73.679 1.42e-15 ***
dose: cubic 1 31.6 31.6 6.175 0.0137 *
dose: quartic 1 6.9 6.9 1.345 0.2473

Residuals 229 1172.1 5.1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The alternative approach to providing inferences on the aov model object is to use the
summary.lm function. This will produce t-tests, but they are equivalent to Type III SS F
tests. Note that the squares of the t values do not exactly equal the F values produced above
by the split argument in summary because of this Type I vs Type III distinction.

# or
summary.lm(fit2t.aov)

Call:
aov(formula = speed15 ~ dose, data = mouse)

Residuals:
Min 1Q Median 3Q Max

141



-6.1194 -1.4152 -0.0894 1.3701 6.9716

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.9981 0.1479 94.645 < 2e-16 ***
dose.L 1.8621 0.3319 5.610 5.80e-08 ***
dose.Q -2.8387 0.3309 -8.580 1.45e-15 ***
dose.C -0.8203 0.3301 -2.485 0.0137 *
dose^4 -0.3827 0.3300 -1.160 0.2473
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.262 on 229 degrees of freedom
Multiple R-squared: 0.3285, Adjusted R-squared: 0.3167
F-statistic: 28 on 4 and 229 DF, p-value: < 2.2e-16

Alternatively, we can do the trend analysis with lm and obtain the parameter estimates instead
of variance partitioning as was the case with applying summary.lm to the aov object. Note
that the orthogonal polynomial contrasts are still in effect from above. The results produce t
values that are close, but not identical, to the square roots of the F tests seen just above but
they match the t values from summary.lm. If the design has equal sample size then these three
different ways of obtaining inferences on the contrasts will all match.

fit3t.lm <- lm(speed15~dose, data=mouse)
summary(fit3t.lm)

Call:
lm(formula = speed15 ~ dose, data = mouse)

Residuals:
Min 1Q Median 3Q Max

-6.1194 -1.4152 -0.0894 1.3701 6.9716

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.9981 0.1479 94.645 < 2e-16 ***
dose.L 1.8621 0.3319 5.610 5.80e-08 ***
dose.Q -2.8387 0.3309 -8.580 1.45e-15 ***
dose.C -0.8203 0.3301 -2.485 0.0137 *
dose^4 -0.3827 0.3300 -1.160 0.2473
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.262 on 229 degrees of freedom
Multiple R-squared: 0.3285, Adjusted R-squared: 0.3167
F-statistic: 28 on 4 and 229 DF, p-value: < 2.2e-16

Important: This discrepancy of summary with split and summary.lm arises because in the
former instance, SS calculations are Type I. But in the latter regression parameter testing, the
t-tests are tantamount to a SS type III approach.

13.7 Effect size proportion of variance estimates for contrasts.

A manual approach is used since I am still looking for an efficient way to generate eta-squared
like effect size estimates for analytical contrasts. emmeans (as seen below) will provide Cohen’s
d values for contrasts.

13.7.1 A manual approach to eta squared calculations for contrasts

Here, the manual approach begins by finding SStotal to be used as the denominator for eta
squared computations for each contrast. Then create a vector of the SS for those four trend
components. Then divide the vector by SStotal for the four eta squared estimates.

A second useful descriptive statistic takes each trend component SS and divides by the SSbe-
tween. This yields a proportion statistic that characterizes the percentage of the between-group
effect that each orthogonal trend component accounts for.

Initially, I used the SS values from the summary function application to the aov object. This
means that the SS are Type I SS and this may not be what is wanted (see below).

# first define SStotal
sst <- var(mouse$speed15)*(length(mouse$speed15)-1)
sst

[1] 1745.362

#Then create a vector of the SS components for trend
sstrend1 <- c(157.7,377.1,31.6,6.9)
names(sstrend1) <- c("linear", "quadratic", "cubic", "quadratic")
sstrend1
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linear quadratic cubic quadratic
157.7 377.1 31.6 6.9

sstrend1/sst

linear quadratic cubic quadratic
0.090353733 0.216058293 0.018105123 0.003953334

sstrend1/573.3

linear quadratic cubic quadratic
0.27507413 0.65777080 0.05511948 0.01203558

13.7.2 eta squared for Type III SS

Although we were able to find SS computed as Type I ss with the summary function and the
“split” argument, and the Type III t-tests using summary.lm, we have not seen the contrast
SS directly for Type III computations. Neither anova or Anova provide SS for contrasts when
applied to either aov or lm objects. But there is a more manual way to obtain them and to
use them for effect size (proportion of variance) computations. Using an approach found in
chapter 12 (unequal N), I have created four new variables in a new copy of the mouse data set
(mouse2). These are the full vectors for the four trend components and are the same weights
seen above in the display of the contrasts for mouse$dose. These are then directly used as four
IVs in a regression rather than using dose as a factor.

mouse2 <- mouse
contrasts(mouse2$dose) <- contr.poly(5,scores=c(0,1,1.5,2,2.5))
trendcoeff <- as.matrix(contrasts(mouse2$dose))
#trendcoeff
#library(dplyr)
mouse2$linear <- dplyr::case_when(
mouse$edose == 0 ~ trendcoeff[1,1],
mouse$edose == 1 ~ trendcoeff[2,1],
mouse$edose == 1.5 ~ trendcoeff[3,1],
mouse$edose == 2 ~ trendcoeff[4,1],
mouse$edose == 2.5 ~ trendcoeff[5,1]

)
mouse2$quadratic <- dplyr::case_when(
mouse$edose == 0 ~ trendcoeff[1,2],
mouse$edose == 1 ~ trendcoeff[2,2],
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mouse$edose == 1.5 ~ trendcoeff[3,2],
mouse$edose == 2 ~ trendcoeff[4,2],
mouse$edose == 2.5 ~ trendcoeff[5,2]

)
mouse2$cubic <- dplyr::case_when(
mouse$edose == 0 ~ trendcoeff[1,3],
mouse$edose == 1 ~ trendcoeff[2,3],
mouse$edose == 1.5 ~ trendcoeff[3,3],
mouse$edose == 2 ~ trendcoeff[4,3],
mouse$edose == 2.5 ~ trendcoeff[5,3]

)
mouse2$quartic <- dplyr::case_when(
mouse$edose == 0 ~ trendcoeff[1,4],
mouse$edose == 1 ~ trendcoeff[2,4],
mouse$edose == 1.5 ~ trendcoeff[3,4],
mouse$edose == 2 ~ trendcoeff[4,4],
mouse$edose == 2.5 ~ trendcoeff[5,4]

)
gt(psych::headTail(mouse2))

dose speed15 edose linear quadratic cubic quartic
SALINE 9.76 0 -0.73 0.49 -0.17 0.04
1 g/kg 13.35 1 -0.21 -0.47 0.63 -0.37

SALINE 10.72 0 -0.73 0.49 -0.17 0.04
1 g/kg 13.56 1 -0.21 -0.47 0.63 -0.37

NA ... ... ... ... ... ...
1 g/kg 13.54 1 -0.21 -0.47 0.63 -0.37
2 g/kg 16.94 2 0.31 -0.12 -0.62 -0.55

2.5 g/kg 17.35 2.5 0.57 0.56 0.37 0.15
1.5 g/kg 11.95 1.5 0.05 -0.46 -0.22 0.73

The linear model is fit by naming all four orthogonal polynomial vectors. This replicates the
fit3.lm analysis seen above.

fit6.lm <- lm(speed15~linear+quadratic+cubic+quartic,data=mouse2)
summary(fit6.lm)

Call:
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lm(formula = speed15 ~ linear + quadratic + cubic + quartic,
data = mouse2)

Residuals:
Min 1Q Median 3Q Max

-6.1194 -1.4152 -0.0894 1.3701 6.9716

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.9981 0.1479 94.645 < 2e-16 ***
linear 1.8621 0.3319 5.610 5.80e-08 ***
quadratic -2.8387 0.3309 -8.580 1.45e-15 ***
cubic -0.8203 0.3301 -2.485 0.0137 *
quartic -0.3827 0.3300 -1.160 0.2473
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.262 on 229 degrees of freedom
Multiple R-squared: 0.3285, Adjusted R-squared: 0.3167
F-statistic: 28 on 4 and 229 DF, p-value: < 2.2e-16

But the value in repeating the analysis this way is that now when we apply the anova and
Anova functions to the fit6.lm model, we see Type I and Type III SS directly

#produces Type I SS
anova(fit6.lm)

Analysis of Variance Table

Response: speed15
Df Sum Sq Mean Sq F value Pr(>F)

linear 1 157.68 157.68 30.8080 7.852e-08 ***
quadratic 1 377.11 377.11 73.6790 1.417e-15 ***
cubic 1 31.61 31.61 6.1753 0.01367 *
quartic 1 6.88 6.88 1.3451 0.24734
Residuals 229 1172.08 5.12
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# tables Type III SS, although oddly rounded to zero decimals for display purposes
TypeIIISS <- car::Anova(fit6.lm,type=3)
TypeIIISS
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Anova Table (Type III tests)

Response: speed15
Sum Sq Df F value Pr(>F)

(Intercept) 45848 1 8957.7192 < 2.2e-16 ***
linear 161 1 31.4775 5.796e-08 ***
quadratic 377 1 73.6105 1.455e-15 ***
cubic 32 1 6.1746 0.01368 *
quartic 7 1 1.3451 0.24734
Residuals 1172 229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the square roots of the four F values from the Type III match the t values from
the summary above (which is known to test type III hypotheses).

First extract the F values from the Anova object:

TypeIIISS$`F value`[2:5]

[1] 31.477497 73.610476 6.174561 1.345139

And take the square roots:

round(sqrt(TypeIIISS$`F value`[2:5]),3)

[1] 5.610 8.580 2.485 1.160

With this approach validated, next we can extract the Type III SS and compute eta squared
values.

SSvalues3 <- TypeIIISS$`Sum Sq`[2:5]
SSvalues3

[1] 161.10977 376.75699 31.60296 6.88476

Recall that we created an object above for SStotal:
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sst

[1] 1745.362

Dividing the four SS for the type III trend components by this SStotal yeilds eta squared
values for the four orthogonal trend components, in the order of linear, quadratic, cubic, and
quartic:

SSvalues3/sst

[1] 0.092307351 0.215861765 0.018106819 0.003944602

The reader has probably noticed that the Type I and Type III F values, and the Type I and
Type III SS, and the Type I and III eta squareds are very similar. Not exactly the same, but
close. This is because, in this data set, the sample sizes are nearly equal - only one group
differed from the others which were equal to each other and the one group was only 1 case
smaller (see descriptives above). Thus the degree of “unbalance” or non-orthogonality is small.
This can be further validated by examining the correlation structure among the four coding
vectors created for the mouse2 data frame. If the data set were fully balanced (equal n), then
these correlations would all be zero. The vectors are only slightly correlated.

cor(mouse2[4:7])

linear quadratic cubic quartic
linear 1.0000000000 0.0076951202 -0.0026229729 0.0005741925
quadratic 0.0076951202 1.0000000000 0.0017630186 -0.0003859407
cubic -0.0026229729 0.0017630186 1.0000000000 0.0001315525
quartic 0.0005741925 -0.0003859407 0.0001315525 1.0000000000

13.8 using emmeans for trend analysis

In order to use emmeans to perform the orthogonal trend decomposition, we need to be able
to pass the exact trend coefficients that we saw earlier. Since they were based on unequally
spaced intervals and since R chooses a scale such that the sum of the squared coefficients
equals 1 (orthonormalizing), the coefficients are decimal quantities. For accuracy we need
to extract those exact values from the contrasts(dose) object and then pass them to the
emmeans function. Initially, these coefficients are in a matrix, and I found it easier to convert
that matrix to a data frame so that the columns of coefficients can be extracted. Notice the
possibility of adjusting the p-values and/or CIs for the multiple testing situation. Just for
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demonstration, I did not adjust the t-test inferences but I did adjust the CIs (just to show
how the adjustment is done).

fit2.emm.a <- emmeans::emmeans(fit3t.lm, "dose", data=mouse)
trend <- as.data.frame(contrasts(mouse$dose))
# check with, e.g., trend[,4]
lincombs <- emmeans::contrast(fit2.emm.a,

list(linear=trend$.L,
quadratic=trend$.Q,
cubic=trend$.C,
quartic=trend$'^4'
))

emmeans::test(lincombs, adjust="none")

contrast estimate SE df t.ratio p.value
linear 1.862 0.332 229 5.610 <.0001
quadratic -2.839 0.331 229 -8.580 <.0001
cubic -0.820 0.330 229 -2.485 0.0137
quartic -0.383 0.330 229 -1.160 0.2473

confint(lincombs, adjust="sidak")

contrast estimate SE df lower.CL upper.CL
linear 1.862 0.332 229 1.03 2.69535
quadratic -2.839 0.331 229 -3.67 -2.00800
cubic -0.820 0.330 229 -1.65 0.00851
quartic -0.383 0.330 229 -1.21 0.44579

Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates

These t test values match the lm model output (and application of summary.lm to the aov
object) where regression coefficients were tested and thus relate to Type III SS. This is probably
the most appropriate way to do trend analysis when there is unequal N, although it is more
cumbersome than using the “split” argument.

Another utility of emmeans is the ability to compute effect sizes. In this case, the eff_size
function produces Cohen’s d values for each contrast. I don’t believe that emmeans produces
proportion of variance effect sizes for contrasts (a definite weakness) - we did that manually
above.
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emmeans::eff_size(lincombs, sigma=sigma(fit3t.lm), edf=229,method="identity")

contrast effect.size SE df lower.CL upper.CL
linear 0.823 0.152 229 0.524 1.1219
quadratic -1.255 0.158 229 -1.565 -0.9443
cubic -0.363 0.147 229 -0.652 -0.0731
quartic -0.169 0.146 229 -0.457 0.1187

sigma used for effect sizes: 2.262
Confidence level used: 0.95

13.9 Summary to this point in the analysis of the dose response
data set

At this point, we have information from the analysis that largely fits what our eye saw from the
dose response curve figures. Low doses tended to increase running speed relative to the control
condition but at the highest dose, the curve began to take a downward trajectory, reflecting
the expectation outlined above. In terms of the trend analysis, the shape of the curve was
largely influenced by linear and quadratic components, with the quadratic bend accounting
for the majority of the Between group effect of the IV (the 66% value just calculated).

13.10 Post Hoc tests

The full ANOVA and trend decomposition didn’t tell us about one interesting question that
emerges from examination of the dose response curve. We might as whether the 2.5 dose mean
is actually different from the 2.0 dose. I.e., is the drop “significant”. This is explicitly a post
hoc question. The most direct way of evaluating this is with a Tukey test. I’ll opt for doing
both the standard Tukey HSD test and the DTK test here. DTK is applicable when there is
unequal sample size and heterogeneity of variance (we had a hint of that when we examined the
sd’s for the five groups). Since that one pairwise comparison (2 vs 2.5) was derived from visual
examination of the figure in a post hoc way, it can be argued that all pairwise comparisons
were visually taken in to account. The results of the DTK test function will evaluate all of
those pairwise comparisons and the alpha rate adjustment properly takes this into account.

# first, use the Tukey HSD test procedure
TukeyHSD(fit1t.aov)

150



Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = speed15 ~ dose, data = mouse)

$dose
diff lwr upr p adj

1 g/kg-SALINE 3.2027633 1.9125852 4.4929414 0.0000000
1.5 g/kg-SALINE 3.9229500 2.6327718 5.2131281 0.0000000
2 g/kg-SALINE 4.2552967 2.9651186 5.5454748 0.0000000
2.5 g/kg-SALINE 1.7431045 0.4529263 3.0332826 0.0023542
1.5 g/kg-1 g/kg 0.7201867 -0.5630363 2.0034096 0.5355178
2 g/kg-1 g/kg 1.0525334 -0.2306895 2.3357563 0.1634975
2.5 g/kg-1 g/kg -1.4596588 -2.7428818 -0.1764359 0.0168655
2 g/kg-1.5 g/kg 0.3323467 -0.9508762 1.6155697 0.9535766
2.5 g/kg-1.5 g/kg -2.1798455 -3.4630685 -0.8966226 0.0000500
2.5 g/kg-2 g/kg -2.5121922 -3.7954152 -1.2289693 0.0000018

# now request the Dunnett-Tukey-Kramer test:
DTK.result <- DTK::DTK.test(mouse$speed15,mouse$edose)
DTK.result

[[1]]
[1] 0.05

[[2]]
Diff Lower CI Upper CI

1-0 3.2027633 2.16944629 4.2360803
1.5-0 3.9229500 2.87151157 4.9743884
2-0 4.2552967 3.24521665 5.2653768
2.5-0 1.7431045 0.15203497 3.3341740
1.5-1 0.7201867 -0.41301751 1.8533909
2-1 1.0525334 -0.04240628 2.1474731
2.5-1 -1.4596588 -3.10589543 0.1865778
2-1.5 0.3323467 -0.77974361 1.4444370
2.5-1.5 -2.1798455 -3.83756613 -0.5221249
2.5-2 -2.5121922 -4.14361391 -0.8807706

#DTK.plot(DTK.result)

Of course there other ways to do post hoc testing that could fit this data set. We might want
to use the Dunnett test to compare each treatment group with control. It turns out that none
of the four CIs overlaps zero, so we conclude each dose significantly raised DV scores.
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### The DUNNETT TYPE OF TEST FOR COMPARING TREATMENTS TO A COMMON CONTROL GROUP
require(multcomp)
fit1.dunnett <- glht(fit1t.aov,linfct=mcp(dose="Dunnett"))
# obtain CI's do test each difference
confint(fit1.dunnett, level = 0.95)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = speed15 ~ dose, data = mouse)

Quantile = 2.4572
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

1 g/kg - SALINE == 0 3.2028 2.0498 4.3557
1.5 g/kg - SALINE == 0 3.9229 2.7700 5.0759
2 g/kg - SALINE == 0 4.2553 3.1023 5.4083
2.5 g/kg - SALINE == 0 1.7431 0.5901 2.8961

We might also wish to do pairwise comparisons with methods other than the Tukey or DTK
test. We can use the pairwise.t.test function.

# This function provides several of the bonferroni style corrections
# for pairwise multiple comparisons. Note that it permits use of
# the pooled within cell variance as the core error term.
# first, just do pairwise comparisons with bonferroni corrections for
# having done a set of three "contrasts". should match results seen
# above in the BonferroniCI function.
pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="bonf")

Pairwise comparisons using t tests with pooled SD

data: mouse$speed15 and mouse$dose
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SALINE 1 g/kg 1.5 g/kg 2 g/kg
1 g/kg 7.8e-10 - - -
1.5 g/kg 6.1e-14 1.0000 - -
2 g/kg 5.6e-16 0.2506 1.0000 -
2.5 g/kg 0.0026 0.0199 5.1e-05 1.8e-06

P value adjustment method: bonferroni

# We can change the approach to the Holm, Hochberg, Hommel,
# Benjamini and Hochberg, Benjamini&Yekutieli, and fdr corrections,
# as well as "none" which will give the same thing as the LSD test.
# Choice of these depends on several factors, including whether
# the contrasts examined are independent (and they are not since they
# are all of the pairwise comparisons,
# Of these modified bonferroni type of approaches, the "BY" and "fdr"
# approaches are probably the most appropriate here, since some of our
# comparisons are correlated and BY permits that correlation to be either
# positive or negative
#pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="holm")
#pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="hochberg")
#pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="hommel")
#pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="BH")
pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="BY")

Pairwise comparisons using t tests with pooled SD

data: mouse$speed15 and mouse$dose

SALINE 1 g/kg 1.5 g/kg 2 g/kg
1 g/kg 7.6e-10 - - -
1.5 g/kg 8.9e-14 0.4041 - -
2 g/kg 1.6e-15 0.0917 1.0000 -
2.5 g/kg 0.0012 0.0083 3.0e-05 1.3e-06

P value adjustment method: BY

pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="fdr")

Pairwise comparisons using t tests with pooled SD
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data: mouse$speed15 and mouse$dose

SALINE 1 g/kg 1.5 g/kg 2 g/kg
1 g/kg 2.6e-10 - - -
1.5 g/kg 3.0e-14 0.13796 - -
2 g/kg 5.6e-16 0.03132 0.47710 -
2.5 g/kg 0.00043 0.00284 1.0e-05 4.5e-07

P value adjustment method: fdr

#pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=TRUE,p.adj="none")
# note that setting pool.sd to FALSE changes the outcome since
# it employs a Welch or Fisher-Behrens type of approach
pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=FALSE,p.adj="bonf")

Pairwise comparisons using t tests with non-pooled SD

data: mouse$speed15 and mouse$dose

SALINE 1 g/kg 1.5 g/kg 2 g/kg
1 g/kg 9.8e-13 - - -
1.5 g/kg < 2e-16 0.74370 - -
2 g/kg < 2e-16 0.07593 1.00000 -
2.5 g/kg 0.02771 0.14049 0.00372 0.00042

P value adjustment method: bonferroni

# or
pairwise.t.test(mouse$speed15,mouse$dose,pool.sd=FALSE,p.adj="fdr")

Pairwise comparisons using t tests with non-pooled SD

data: mouse$speed15 and mouse$dose

SALINE 1 g/kg 1.5 g/kg 2 g/kg
1 g/kg 3.3e-13 - - -
1.5 g/kg < 2e-16 0.08263 - -
2 g/kg < 2e-16 0.01085 0.39824 -
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2.5 g/kg 0.00462 0.01756 0.00074 0.00011

P value adjustment method: fdr

13.11 Evaluation of Assumptions: graphical and inferential
evaluation

Perhaps this section is placed too late in the flow of the analyses since violations of the
assumption(s) would have implications for most of the tests above.

First, we can obtain the standard pair of plots for evaluating normality and homoscedasticity
of the residuals from the ANOVAs done above. It is easiest to work with the lm fit object.
The first plot reveals the heteroscedasticity that we suspected. The group that has the largest
residual spread is the group that had a mean near 13 (the 2.5 g/kg dose group), and this group
had the highest standard deviation, as seen with the initial descriptive statistics. The second
plot, at first glance gives a reasonable impression of a fit to normality for the residuals but
closer inspection suggests a pattern where the largest outliers deviate a bit from expectation.

plot(fit3t.lm,which=1)
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plot(fit3t.lm,which=2)
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Lets pursue this potential non-normality a bit further. If we extract the residuals from the lm
object, we can draw both the qqPlot figure and a frequency histogram.

car::qqPlot(fit3t.lm$residuals)
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hist(fit3t.lm$residuals, prob=TRUE, col="gray82",breaks=16)
lines(density(fit3t.lm$residuals, bw=1))
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Histogram of fit3t.lm$residuals
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Both figures suggest that the normality assumption may not be violated here, but we can do a
test. We find that the Anderson-Darling test does not permit rejection of the null hypothesis
that normality is present.

#library(nortest)
nortest::ad.test(residuals(fit3t.lm)) #get Anderson-Darling test for normality (nortest package must be installed)

Anderson-Darling normality test

data: residuals(fit3t.lm)
A = 0.42988, p-value = 0.3059

Now let’s evaluate the Homogeneity of Variance Assumption. Among the several ways we
reviewed to do this, the median-centered Levene test is probably adequate:

lawstat::levene.test(mouse$speed15,mouse$dose,location="median")

Modified robust Brown-Forsythe Levene-type test based on the absolute
deviations from the median
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data: mouse$speed15
Test Statistic = 13.477, p-value = 7.011e-10

##########################################
## Plot of cell means vs cell variances ##
##########################################
# recall that this type of plot helps evaluate whether
# heterogeneity of variance might have arisen from a simple
# scaling issue. If so, then scale transformations may help.
# E.g,, a postive mean-variance correlation reflects a situation where
# a log transformation or a fractional exponent transformation of the DV
# might produce homoscedasticity.
# I'm also using the tapply function here in ways that we have not covered.
# Tapply is an important function in dealing with factors.
plot(tapply(mouse$speed15,mouse$dose, mean), tapply(mouse$speed15,mouse$dose, var), xlab = "Cell Means",

ylab = "Cell Variances", pch = levels(mouse$edose))
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# examination of the plot shows that the heterogeneity is not simply due to a
# mean variance correlation. the group with the highest variance is the highest
# dose group and no simple transformation can take care of the problem.
# the dispersion difference may come from a sex difference that was not examined here.
# thus the model may be underspecified and this may have produced the heterogeneity
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# recall that we can do the extension of the Welch test to 1-way anova

13.12 Alternate analyses when faced with Heteroscadisticity

The omnibus F test can be re-examined, using the Welch f test approach and we already re-
viewed that capability with the oneway.test function. Unsurprisingly, the omnibus F remains
significant (with this large N design and strong treatment effects) at the .05 level.

oneway.test(speed15~dose,var.equal=F, data=mouse)

One-way analysis of means (not assuming equal variances)

data: speed15 and dose
F = 46.616, num df = 4.00, denom df = 113.58, p-value < 2.2e-16

Wilcox argues for use of the percentile t approach to bootstrapping whenver either/or het-
eroscadisticy or non-normality are present. That method was simple to implement and also
yields a rejection of the omnibus null hypothesis. The “tr” argument specifies the degree of
trimming. This choice is not to be taken lightly and users should be familiar with the litera-
ture on trimmed means, Winsorized means, and other M-estimators. The abundant writings
of Wilcox (e.g., (Wilcox, 2016)) are a good starting point.

# from the WRS2 package
WRS2::t1waybt(speed15~edose,tr=.2,nboot=2000, data=mouse)

Call:
WRS2::t1waybt(formula = speed15 ~ edose, data = mouse, tr = 0.2,

nboot = 2000)

Effective number of bootstrap samples was 2000.

Test statistic: 49.8329
p-value: 0
Variance explained: 0.376
Effect size: 0.613
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Pairwise comparisons using bootstrapping also yield similar conclusions to the traditional tests
done above.

# from the WRS2 package
WRS2::mcppb20(speed15~edose,tr=.2,nboot=2000, data=mouse)

Call:
WRS2::mcppb20(formula = speed15 ~ edose, data = mouse, tr = 0.2,

nboot = 2000)

psihat ci.lower ci.upper p-value
0 vs. 1 -2.97790 -4.08212 -2.07820 0.000
0 vs. 2 -4.07103 -5.14908 -2.95830 0.000
0 vs. 2.5 -4.32550 -5.25830 -3.36071 0.000
0 vs. 1.5 -1.78139 -3.87290 0.12393 0.011
1 vs. 2 -1.09314 -2.23786 0.21873 0.018
1 vs. 2.5 -1.34761 -2.35445 -0.24779 0.000
1 vs. 1.5 1.19650 -0.82969 3.24613 0.096
2 vs. 2.5 -0.25447 -1.39730 0.88428 0.522
2 vs. 1.5 2.28964 0.16195 4.39558 0.001
2.5 vs. 1.5 2.54411 0.63251 4.61243 0.000

I am not yet confident of a way to implement bootstrapping for analytical contrasts, such as
trend analysis, in R. It should be possible to do it by bootstrapping the lm model fit. One
approach is found in the Resampling chapter.
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14 Reproducibility

Version 1.7 March 19,2025

• Converted to Quarto
• Updated some stylistic things with package naming
• Improved wording
• Added some new functionality with contrasts, trend, and unequal N
• corrected several typos

Version 1.6 Feb 8, 2023

• Updated defunct function arguments.
• Updated syntax styles and improved some wording/layout.
• Corrected a few typos.
• Clarified some fuzzy discussions in contrast analysis and Bayesian inference.

Version 1.5 Mar 1, 2021

• Reorganized and expanded the effect size chapter.
• Reworked the sequence of ggplot graphs in the EDA section.
• Updated some syntax styles and improved some wording/layout.
• Corrected too many typos.

Version 1.4 Oct 16, 2020

• Added a chapter on unequal sample size implications.
• Updated some syntax styles and improved some wording.

Version 1.3 Oct 13, 2020

• Updated some syntax styles and emphasized using summary.lm on aov objects
• Cleaned up some wording and layout issues.

Version 1.2 Sept. 16, 2020

• Updated for some R version 4 compatibility issues, including stringsAsFactors in
read.csv.

• Also edited some wording.
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Version 1.1 April 9, 2020

• converted to bookdown format, added multiple sections:
• new graphs, contrast analysis details, nonparametrics, permutation, bootstrapping, etc.

Version 1.0 Feb 25, 2019

sessionInfo()

R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] compiler_4.4.2 fastmap_1.2.0 cli_3.6.3 tools_4.4.2
[5] htmltools_0.5.8.1 rstudioapi_0.16.0 rmarkdown_2.27 knitr_1.48
[9] jsonlite_1.8.8 xfun_0.46 digest_0.6.36 rlang_1.1.4
[13] evaluate_0.24.0
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