
Beginning with Data in R
Best practices for Importing, Managing and Saving Data Sets

Bruce Dudek

2021-07-28

Contents
1 Introduction 2

1.1 Flat Text Files such as .txt or .csv . 3
1.2 Proprietary binary file types such as .xlsx or .sav . 3

2 The R Environment for this Document 3

3 Folders, directories, projects and file locations 4
3.1 Setting The Working Directory . 4
3.2 Using the file.choose() function . 4

4 Import text files such as .txt or .csv using Base R methods 4
4.1 Using read.table . 4
4.2 Using read.csv . 6
4.3 using read.delim . 7
4.4 Using read.csv2 and read.delim2 . 7
4.5 Handling missing data in reading .csv files . 8
4.6 Additional Detailed information on the read. family of functions 9

5 Import text files such as .txt or .csv using Tidyverse methods 9
5.1 using read_table and read_csv for ascii text files . 9

6 Import Commercial Statistical Software Data Files using foreign 12
6.1 Importing data from SPSS . 13
6.2 Templates for importing from SAS, Stata, Systat, Minitab . 15

7 Commercial Statistical Software Data Files (SPSS, STATA, SAS) using Tidyverse meth-
ods 16
7.1 Read SPSS .sav file with read_sav or read_spss . 16
7.2 haven templates for SAS and Stata . 18

7.2.1 Comments on the haven functions . 19

8 Import Excel Spreadsheet Data 19
8.1 Copy/Paste from the Excel spreadsheet . 19
8.2 Save Excel files to .csv format . 19
8.3 Using the xlsx package . 19

9 Converting tibbles to data frames 21

10 Data Tables 21

1

11 Importing data from Databases 21
11.1 Importing Relational Databases . 22
11.2 Importing from non-relational data bases . 22

12 Importing data from tables in web pages (HTML tables) 22

13 Web scraping 22

14 Text Mining 22

15 Handling date and time values 23

16 Write data frames to .txt, .csv, or Excel files 23

17 Saving or exporting .csv files from SPSS 23

18 Issues with Encoding of ascii text files 26

19 Saving/loading R data frames, objects, and workspaces 27
19.1 Rds files for single R objects . 27
19.2 Tips on file naming . 28
19.3 RData files for multiple R objects or whole workspaces . 28
19.4 Saving the whole set of Global Environment Objects - the workspace 28

20 Using RStudio to directly import data 28

21 Documentation for Reproducibility 28

1 Introduction
This document is target to researchers who are beginning to learn R usage and students who are learning R
in introductory statistics classes. The document has general utility but is specifically targeted for students
in B. Dudek’s APSY510/511 statistics classes. Parts of it compare methods in R with those used in other
software such as SPSS. It is expected that most users of this document are in the early stages of learning R.
Therefore, some time is taken to provide additional basic instruction in the R language where it is needed to
facilitate the data import process.

For researchers, the most important first steps are learning how to import data, of varying formats (e.g.,
.txt, .csv, .xlsx, .sav, etc.), into R and saving it. Within R, data can be found in many different kinds of
objects such as vectors, matrices, lists, etc. The most common type of data structure used in statistical
analysis is a so-called “flat-file” or “rectangular” structure. These are two dimensional arrays where rows
are “cases” and columns are “variables”. This is the most common structure used for statistical analysis
and by commercial software such as SPSS, Stata, Systat and SAS. In R, the parallel is called a data frame.
The primary emphasis in this document is import of flat file data sets into R as data frames. Additional
needs such as import of relational databases, textual data for text mining, web scraping, etc are mentioned
superficially but they are not the primary goal of this document.

Two other flat file data types in R can be seen as enhanced versions of data frames: data tables and tibbles.
Some attention to them is also provided in brief sections.

Two major classes of file types containing data are emphasized in this document. They are ascii text files
and proprietary binary files created by commercial software. This recognizes that the most common method
of bringing data into R is from one of these other file types, such as a .csv file, an Excel spreadsheet or an
SPSS/Stata/Systat/SAS system file.

The flow of the document is to outline base R methods first and then outline use of newer methods employing
tidyverse functions from readr.

2

In my view the most important parts of this document are those which treat importing data in .csv files.
Although much additional background and illustration is included, skipping ahead to those sections is
permitted!

One possibility for a learning path is to look at the last section in this document: “Using RStudio to directly
import data”. This menu-driven approach is a convenient way to quickly import data and learn code at the
same time.

1.1 Flat Text Files such as .txt or .csv
Data often exist as flat files in plain ascii text file formats. These may be in a fixed column format or a free
field structure as covered in an earlier document. Each row is a case and variables are delimited by spaces,
tabs, commas, semi-colons or other indicators. A .txt file most typically has white space as a delimiter (a
simple space or a tab). A text file that uses commas as a delimiter is called a .csv file (Comma Separated
Values). These .csv files are probably the most important file type for moving data around from application
to application. So, for example, saving data in SPSS as a .csv file is a useful skill with the “Export” menu
operation. Saving an Excel spreadsheet as a .csv file may be the most common way of producing a portable
data file.

1.2 Proprietary binary file types such as .xlsx or .sav
Commercial software will save data files with their own special binary format. An Excel .xlsx file will not
only contain the data value in the cells but also the Excel Formulas and formatting. In the major commercial
statistics packages their formats may include variable attributes such as value and variable labels as well.
Moving data from these software types into R can involve exporting the relevant information into a .csv file
or we will see that it is possible to import these files directly into R as well. The author has a preference for
exporting to the .csv format which is typically the most easily imported into R.

2 The R Environment for this Document
Several packages are required for the work in this document. They are loaded here, but comments/reminders
are placed in some code chunks so that it is clear which package some of the functions come from. This next
code chunk tests whether the user has the relevant packages already installed and then installs those that
aren’t. And then succeeding code chunk loads them.
define an objecct that is a list of names of all the packages used in this document
pkg <- c("knitr", "rmarkdown", "foreign", "data.table", "readr", "xlsx", "readxl", "writexl", "haven", "dplyr")

Check if packages are not installed and create a new object that
is a list of the names of the packages not installed: new.pkg
new.pkg <- pkg[!(pkg %in% installed.packages())]

install those that are not already installed
if (length(new.pkg)) {

install.packages(new.pkg, repos = "http://cran.rstudio.com")
}

library(knitr)
library(foreign)
library(readr)
library(xlsx)
library(readxl)
library(writexl)
library(haven)
library(dplyr)

3

3 Folders, directories, projects and file locations
For any of the import functions, one has to pass the data file name as an argument so knowing where
that file resides is important. At the outset, importing data from a file requires a method for creating
directories/folders with the computer system OS that enables efficient organization. Importing data sets
requires knowing where such files are saved and orienting R to that location.

3.1 Setting The Working Directory
The recommended way of working in R is to make extensive use of “projects” in RStudio. This automatically
sets the working directory to a folder specified when the project was created in RStudio. For some “projects”
it is satisfactory to have the data file (e.g., a .csv file) in that folder. Perhaps a subfolder called “data” might
also be desireable.

If one is not working in an RStudio “project” then setting the working directory can be done with a menu
option: Session - Set Working Directory - Choose directory. Then the files pane will show the files in that
folder.

If one is not working in RStudio, but instead in RGui/RConsole, then setting the working directory can also
be done. Choose File - Change Dir and then navigagate to the proper directory in the dialog box.

Setting the working directory can always be done with code:
setwd("full folder name")

Identifying the current working directory can also be done with code:
getwd()

3.2 Using the file.choose() function
All of the import functions have a first argument that is the name of the file to be imported. Often, rather
than type in the exact name (which might be forgotten or in another folder than the working folder) it is
possible to have R generate a dialog box permitting mouse-based choice of the file name and folder. Examples
below make regular use of this function.

4 Import text files such as .txt or .csv using Base R methods
The illustrations here provide the basics for reading ascii text files. The read.csv and read.delim functions
are variants of the more general read.table function. With read.table, we can read any ascii text file and
specify the exact characteristics. There are several core characteristics that need to be defined and they
comprise a list of arguments to be passed to read.table:

• file: name of the file to be imported
• header: does the first line of the data file contain variable names? default is FALSE
• sep: what is the separator between values? default is whitespace (includes spaces and tabs)
• dec: defining character for decimal place. default is a period
• encoding: defines encoding method for ascii text. default is Latin-1 or UTF-8

With these defaults, read.table expects a file without a header line of variable names, spaces or tabs are
used as the delimiter, a period for a decimal place, and usually UTF-8 encoding (see later section on encoding)

4.1 Using read.table

The read.table() family (including read.csv and read.delim) of functions is found in the utils package
installed with base R.

4

These first two templates in this initial code chunk use the defaults defined above and assume that the data
file is available in the default directory (first commented line of code) or somewhere on the local machine (for
the file.choose usage of the second line of code).

For each instance, the results of the read.table function (and later functions in other sections) are a data
frame that is created as an object with the name of “df1”. The assignment operator (<-) is used to define the
new data frame object as the chosen name (df1 here) containing the results of the read.table operation.
#df1 <- read.table("datafile1.txt")
df1 <- read.table(file.choose())

Here is an example of a .txt file containing 14 cases and 3 variables, in the three columns. There is no header
row containing variable names. The file is a fixed format file where the three variables reside in exactly the
same columns for each case, although a free field format is also readable this way as long as the delimiter is
present. White spaces between variables are simply spaces and delimit the variables. This figure shows what
the plain text file looks like in a text editor. The first variable is a numeric code for religion, the second is a
numeric code for gender and the third is a measured variable hypothetically defined as church attendances in
the past year; each row is a separate individual or case.

The family of read.table functions can also open a data file specified by a URL as the “filename” argument:
df1 <- read.table("https://bcdudek.net/datasets/illustr2_2.txt")
df1

V1 V2 V3
1 1 1 9
2 1 1 1
3 1 2 12
4 2 1 27
5 2 2 32
6 2 2 35
7 3 1 28
8 3 1 17
9 3 2 21
10 4 1 24
11 4 1 31
12 4 2 29
13 5 1 1
14 5 1 22
15 5 2 14

Since no column heading names existed in that data file, we would create them in R to name the variables.
colnames(df1) <- c("religion", "gender", "attend")
df1

5

religion gender attend
1 1 1 9
2 1 1 1
3 1 2 12
4 2 1 27
5 2 2 32
6 2 2 35
7 3 1 28
8 3 1 17
9 3 2 21
10 4 1 24
11 4 1 31
12 4 2 29
13 5 1 1
14 5 1 22
15 5 2 14

read.table should be thought of as the core/parent function in a family of ascii text reading functions. All
arguments/capabilities are available in the “children” versions of read.table outlined next.

4.2 Using read.csv

The read.csv function can be thought of as read.table with sep="," and header=TRUE. It is probably the
most commonly used data import technique in R. Once again, a file name or file.choose can be specified
and it also accommodates URL’s as shown above.
#df2 <- read.csv("datfile1.csv")
df2 <- read.csv(file.choose())

An example is the same data set as used above, but contained in a .csv file. One change is that the gender
variable is written as a string variable instead of as a numeric code. The .csv file looks like this:

Here is code reading that file at an internet location:
df3 <- read.csv("https://bcdudek.net/datasets/illustr2_5b.csv")
str(df3)

'data.frame': 15 obs. of 3 variables:
$ religion: int 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr "female" "female" "male" "female" ...
$ attend : int 9 1 12 27 32 35 28 17 21 24 ...
df3

religion gender attend

6

1 1 female 9
2 1 female 1
3 1 male 12
4 2 female 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male 21
10 4 female 24
11 4 female 31
12 4 male 29
13 5 female 1
14 5 female 22
15 5 male 14

Notice that the structure (from the str function) of the data frame indicates the “class” of gender is “chr”,
meaning character. Attend is “int”, meaning integer and both of these make sense. Historically, prior to R
version 4.0, read.csv produced a class for string variables, such as gender, that is called a FACTOR. For
many analyses that users of this document this is desirable when those variables are used in analyses such as
ANOVA or t-tests, or regression. There is an argument for read.csv called stringsAsFactors that controls
this. Previously it was set to TRUE by default. With the release of R version 4.0, the default was changed to
FALSE. If we re-read the data file with that argument set to TRUE, then gender will be a factor.
df3a <- read.csv("https://bcdudek.net/datasets/illustr2_5b.csv", stringsAsFactors=TRUE)
str(df3a)

'data.frame': 15 obs. of 3 variables:
$ religion: int 1 1 1 2 2 2 3 3 3 4 ...
$ gender : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 1 1 2 1 ...
$ attend : int 9 1 12 27 32 35 28 17 21 24 ...

4.3 using read.delim

We can think of read.delim as a read.table function with header=TRUE and the separator is a tab
(sep="\t"). These would be the defaults forread.delimand offer a quicker way to write the
code than to useread.table‘ specifying the arguments.
#df4 <- read.delim("datafile1.txt")
df4 <- read.delim(file.choose())

4.4 Using read.csv2 and read.delim2

Two other variations are also available for special situations and can speed coding.

read.csv2 changes the delimiter to a semi-colon, and changes the decimal to a comma and is thus like using
read.table this way:
df5 <- read.table("filename", header=TRUE, sep=";", dec=",")

read.delim2retains the tab as delimiter but also expects a header and specifies the decimal as a comma. It
is the same as using read.table this way:
df6 <- read.table("filename", header=TRUE, sep="\t", dec=",")

These two functions quickly enable standard practices for delimited text files in some countries or specialized
fields.

7

4.5 Handling missing data in reading .csv files
The read.table, read.csv, and read.delim functions have an argument called na.strings. Best practice
would be to have missing data values in the .csv files converted to a value of “NA”. The “NA” is interpreted
as missing. So for example if a .csv file has a missing value, then that should result in two successive commas
(or a blank field after the last comma if the last varaible’s data is missing) for that record in the location of
the missing value. Once imported into a data frame by read.csv, we would like the missing value to become
a NA.

Here is a screen capture of an example where one value for gender was deleted, in the fourth case, and one
value for attend was missing in the 9th case. It is the same data file used above to produce df3 and df3a.

Now read.csv is used to import that file with the addition of an argument that indicates that empty fields,
indicated by the two successive quotation marks, will be read as missing and an NA inserted.
df3miss <- read.csv("illustr2_5bmiss.csv",

stringsAsFactors = TRUE,
na.strings = c(""))

df3miss

religion gender attend
1 1 female 9
2 1 female 1
3 1 male 12
4 2 <NA> 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male NA
10 4 female 24
11 4 female 31
12 4 male 29
13 5 female 1
14 5 female 22
15 5 male 14

One final clarification is needed here. In the rmarkdown-generated display of the table in this document, the
missing values for both gender and attend are shown slightly differently. For gender the missing value is “”
and for attend it is “NA”. This is normal. The “” value is used for string/character/factor variables and the
“NA” is used for numeric variables such as attend. Both values are treated the same in analyses.

8

4.6 Additional Detailed information on the read. family of functions
The rudimentary introduction to read.table, read.csv and read.delim found here provides a good start
that will enable most users to import most of the types of data files they will encounter. But this family of
functions is capable of handling many more types of situations. Many sources on the web can be found, but
one very good starting place is the document on the R Project.org site:

https://cran.r-project.org/doc/manuals/r-release/R-data.pdf

5 Import text files such as .txt or .csv using Tidyverse methods
Developers at the RStudio group have created a suite of R packages that work well together and with the
whole R ecosystem. It is called the tidyverse. Included in this suite of packages are many functions that
serve as replacements for the base system approach to things. Data import and data management (called
data wrangling in the data science world) is one of the emphases. Here, we will look at functions that do the
work that we have just covered with the read.table family of data import functions.

These functions come from the readr package. One distinction from the read.table family of functions is
that the readr package functions produce a variation on the data frame called a tibble. Tibbles approach
some challenging issues in use of read.table with improved efficiency, and provide some additional capability,
provide a better foundation for use of tibbles by other tidyverse packages, and are a bit easier to use. One
major advantage of tibbles is purported to be its relative speed at importing large files. There are some
downsides however (some older packages don’t work with tibbles), so one of the illustrations below shows
how to convert a tibble to a data frame if that need is present.

Several blogs/websites can provide more detail on the question of tibbles vs. data frames and can give more
detailed exposition on use of the readr functions than is provided here:

• readr package description

• CRAN page on tibbles

• R for Data Science chapter on tibbles

• The trouble with tibbles

5.1 using read_table and read_csv for ascii text files
The readr package has at least seven functions for varying file formats:

• read_csv(): comma separated (CSV) files (also read_csv2)
• read_tsv(): tab separated files
• read_delim(): general delimited files
• read_fwf(): fixed width files
• read_table(): tabular files white-space separated (also read_table2)
• read_log(): web log files
• read_file(): complete files

We will use read_table and read_csv here. Note how the function names mirror the base system read.table
and read.csv names, using the underscore rather than the dot/period. Their capabilities and defaults are
similar.

The first illustration mirrors the first illustration done above with read.table and uses the same data file.
read_table is used when whitespaces are the delimiter. The col_names argument is an expanded version of
the header argument found in read.table. Since our data file did not have a header line containing variable
names, the argument is set to FALSE here and variable names are automatically generated. By default,
read_table has col_names set to true, and would expect a header line, which we don’t have

9

https://cran.r-project.org/doc/manuals/r-release/R-data.pdf
https://blog.rstudio.com/2016/08/05/readr-1-0-0/
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html
https://r4ds.had.co.nz/tibbles.html
https://www.jumpingrivers.com/blog/the-trouble-with-tibbles/

df7 <- read_table("https://bcdudek.net/datasets/illustr2_2.txt",
col_names=FALSE)

##
-- Column specification --
cols(
X1 = col_double(),
X2 = col_double(),
X3 = col_character()
)
df7

A tibble: 15 x 3
X1 X2 X3
<dbl> <dbl> <chr>
1 1 1 09
2 1 1 01
3 1 2 12
4 2 1 27
5 2 2 32
6 2 2 35
7 3 1 28
8 3 1 17
9 3 2 21
10 4 1 24
11 4 1 31
12 4 2 29
13 5 1 01
14 5 1 22
15 5 2 14

One nice feature of read_table is that an additional usage of col_names can be employed. If a string
of variable names is passed, those variable names will be applied to the variables within the read_table
operation and a second line of code using colnames as was done above is not necessary.
df7b <- read_table("https://bcdudek.net/datasets/illustr2_2.txt",

col_names= c("religion", "gender", "attend"))

##
-- Column specification --
cols(
religion = col_double(),
gender = col_double(),
attend = col_character()
)
df7b

A tibble: 15 x 3
religion gender attend
<dbl> <dbl> <chr>
1 1 1 09
2 1 1 01
3 1 2 12
4 2 1 27
5 2 2 32

10

6 2 2 35
7 3 1 28
8 3 1 17
9 3 2 21
10 4 1 24
11 4 1 31
12 4 2 29
13 5 1 01
14 5 1 22
15 5 2 14

Similary, read_csv handles .csv files with headers and comma delimitation quite directly:
df8 <- read_csv("https://bcdudek.net/datasets/illustr2_5b.csv")

Rows: 15 Columns: 3

-- Column specification --
Delimiter: ","
chr (1): gender
dbl (2): religion, attend

##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(df8)

spec_tbl_df [15 x 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ religion: num [1:15] 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr [1:15] "female" "female" "male" "female" ...
$ attend : num [1:15] 9 1 12 27 32 35 28 17 21 24 ...
- attr(*, "spec")=
.. cols(
.. religion = col_double(),
.. gender = col_character(),
.. attend = col_double()
..)
- attr(*, "problems")=<externalptr>
df8

A tibble: 15 x 3
religion gender attend
<dbl> <chr> <dbl>
1 1 female 9
2 1 female 1
3 1 male 12
4 2 female 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male 21
10 4 female 24
11 4 female 31
12 4 male 29
13 5 female 1

11

14 5 female 22
15 5 male 14

Notice how the printed version of these two tibbles contain definitional information about the type of variable
that each was determined to be. Note that gender is a character vector, not a factor. The following code
chunk shows a way to convert those character variables to factors with the mutate_if function from dplyr.
df8b <- read_csv("https://bcdudek.net/datasets/illustr2_5b.csv")

Rows: 15 Columns: 3

-- Column specification --
Delimiter: ","
chr (1): gender
dbl (2): religion, attend

##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
df8b <- mutate_if(df8b, is.character, factor)
df8b

A tibble: 15 x 3
religion gender attend
<dbl> <fct> <dbl>
1 1 female 9
2 1 female 1
3 1 male 12
4 2 female 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male 21
10 4 female 24
11 4 female 31
12 4 male 29
13 5 female 1
14 5 female 22
15 5 male 14

6 Import Commercial Statistical Software Data Files using foreign
Data from the major commercial statistical analysis packages (e.g., SPSS, Stata, and SAS, and Systat can
all be imported into SPSS and there are only a few ways of doing this. One indirect way to import data
from these packages is to first save it from the application as a .csv file (see a section below on doing this in
SPSS). Alternatively it is possible to read the proprietary binary files (e.g., .sav, .sas7bdat, .dta, .sysdat .The
foreign package has been providing this capability for quite a few years for SPSS, Stata, Minitab, Epi Info,
and Octave. The sas7bdat package can be used to import sas7 files. Exported XPORT files from SAS can
be read with a function from the HMISC package An example with SPSS is provided here, and templates
for a few others. Users are urged to read more detailed documents.

• DataCamp

• foreign package

• sas7bdat package

12

https://www.datacamp.com/community/tutorials/r-data-import-tutorial
https://cran.r-project.org/web/packages/foreign/foreign.pdf
https://cran.r-project.org/web/packages/sas7bdat/sas7bdat.pdf

• sasxport.get from HMISC

6.1 Importing data from SPSS
One can export data from SPSS into .csv files and then use some of the previously described methods to
read those .csv files. This is a recommended method and a section below provides more guidance. However,
it is possible to read the SPSS .sav files directly. In this section, the read.spss function from foreign is
employed. One caution is that in the read.spss documentation it indicates that foreign was written for
earlier versions of SPSS and has not looked to incorporate all changes in later versions of .sav files. It does
say that few changes have occured in .sav files in recent versions. I have found read.spss to be very capable,
but if issues arise, the tidyverse package called haven is a good alternative (outlined in a later section).

Several considerations come in to play in reading .sav files. The two most important are handling of numerically
coded categorical variables and their value labels and the handling of missing data. The read.spss function
provides facility for choices in both of these topics.

A large number of read.spss arguments give the user detailed control over various aspects of the import.
The reader is encouranged to examine the documentation for the read.spss function:

read.spss documentation

Most of the defaults for read.spss arguments are usable, but some attention should be given to a few. The
first question to be addressed is how to handle variables where categorical variables are numerically coded. If
those variables also have value label definitions in SPSS then the value labels can be created when the import
is done and either serve as the data values in the R data frame or as attributes associated with the numerical
values of that variable. Note that an issue arises if not all numerical codes for a variable have a value label
(please read the documentation on this).

For example here is an SPSS screen shot of the same data set used above, with religion and gender coded
numerically:

Here is a screen shot of the same data set showing the value labels for those variables:

13

https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf
https://www.rdocumentation.org/packages/foreign/versions/0.8-79/topics/read.spss

A second issue to address is that With its default settings, read.spss does not create a data frame. We would
typically want it to do so, so an argument must be set to accomplish this. Note that in this default setup,
the religion and gender variables are read as factors rather than numerics. This is because another argument,
use.value.labels is set to TRUE by default. Most typically, this approach of using the string values of the
value labels is what would be preferred. In most analytical applications in traditional statistics, treating the
categorical variables as factors would be preferred. If not, then they can be converted to character types
after the import (with the as.character function), or imported as numerics in the manner shown in the
succeeding code chunk.
df9 <- read.spss("illustr2_5.sav", to.data.frame=TRUE)

re-encoding from UTF-8
str(df9)

'data.frame': 15 obs. of 4 variables:
$ snum : num 1 2 3 4 5 6 7 8 9 10 ...
$ religion: Factor w/ 5 levels "protestant","catholic",..: 1 1 1 2 2 2 3 3 3 4 ...
$ gender : Factor w/ 2 levels "female","male": 1 1 2 1 2 2 1 1 2 1 ...
$ attend : num 9 1 12 27 32 35 28 17 21 24 ...
- attr(*, "variable.labels")= Named chr(0)
..- attr(*, "names")= chr(0)
- attr(*, "codepage")= int 65001
df9

snum religion gender attend
1 1 protestant female 9
2 2 protestant female 1
3 3 protestant male 12
4 4 catholic female 27
5 5 catholic male 32
6 6 catholic male 35
7 7 jewish female 28
8 8 jewish female 17
9 9 jewish male 21
10 10 muslim female 24
11 11 muslim female 31
12 12 muslim male 29
13 13 other female 1
14 14 other female 22

14

15 15 other male 14

If we want to read the religion and gender variables as their numeric values then we change the to.data.frame
argument:
df10 <- read.spss("illustr2_5.sav", to.data.frame=TRUE, use.value.labels=FALSE)

re-encoding from UTF-8
str(df10)

'data.frame': 15 obs. of 4 variables:
$ snum : num 1 2 3 4 5 6 7 8 9 10 ...
$ religion: num 1 1 1 2 2 2 3 3 3 4 ...
..- attr(*, "value.labels")= Named chr [1:5] "5" "4" "3" "2" ...
.. ..- attr(*, "names")= chr [1:5] "other" "muslim" "jewish" "catholic" ...
$ gender : num 1 1 2 1 2 2 1 1 2 1 ...
..- attr(*, "value.labels")= Named chr [1:2] "2" "1"
.. ..- attr(*, "names")= chr [1:2] "male" "female"
$ attend : num 9 1 12 27 32 35 28 17 21 24 ...
- attr(*, "variable.labels")= Named chr(0)
..- attr(*, "names")= chr(0)
- attr(*, "codepage")= int 65001
df10

snum religion gender attend
1 1 1 1 9
2 2 1 1 1
3 3 1 2 12
4 4 2 1 27
5 5 2 2 32
6 6 2 2 35
7 7 3 1 28
8 8 3 1 17
9 9 3 2 21
10 10 4 1 24
11 11 4 1 31
12 12 4 2 29
13 13 5 1 1
14 14 5 1 22
15 15 5 2 14

Another issue to be considered is the handling of missing data. In R, missing values should be written as
“NA”. By default, read.spss converts any SPSS-defined missing values to these NA quantities. The user
should be careful to double check that what is expected is what was produced when there are missing values.

6.2 Templates for importing from SAS, Stata, Systat, Minitab
Stata .dta files are also readable by a foreign function. Reading the helpfile for information on arguments
passed to the function is important. For example, by default convert.factors is set to TRUE.
df11 <- read.dta("filename")

Two other packages also have functions for handling Stata files, but are not illustrated here. See the haven
package discussed below and the Stata.file function in the memisc package.

Systat .syd files can also be read with a **foreign* function. Once again, reading the help file is important.

15

df12 <- read.systat("filename")

SAS data files of the .sas7bdat format can be read with a package of that name sas7bdat.
df13 <- sas7bdat("filename.sas7bdat")

Two additional functions in the foreign package will read SAS Permanent Datasets or SAS XPORT Formatted
libraries, respectively.
df14 <- read.ssd("filename.ssd")
df15 <- read.xport("filename.xport")

7 Commercial Statistical Software Data Files (SPSS, STATA,
SAS) using Tidyverse methods

The recently developed haven package from the tidyverse is a robust suite of tools for importing data sets
from commercial packages. The main data import functions in haven are:

• ‘read_sas()’: reads .sas7bdat and .sas7bcat files from SAS
• ‘read_xpt()’: reads from SAS Transport files
• ‘read_sav()’: reads .sav files from SPSS
• ‘read_por()’: reads .por Portable file exports from SPSS
• ‘read_dta()’: reads .dta files from Stata

As was the case with the readr and readxl package functions described above, these functions produce
tibbles and the user may want to convert to a data as I’ve shown in this first SPSS example.

7.1 Read SPSS .sav file with read_sav or read_spss

Using the same SPSS data file illustration as shown above with read.spss:
df16 <- read_sav("illustr2_5.sav")
str(df16)

tibble [15 x 4] (S3: tbl_df/tbl/data.frame)
$ snum : num [1:15] 1 2 3 4 5 6 7 8 9 10 ...
..- attr(*, "format.spss")= chr "F8.0"
$ religion: dbl+lbl [1:15] 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5
..@ format.spss: chr "F8.0"
..@ labels : Named num [1:5] 1 2 3 4 5
.. ..- attr(*, "names")= chr [1:5] "protestant" "catholic" "jewish" "muslim" ...
$ gender : dbl+lbl [1:15] 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
..@ format.spss : chr "F6.0"
..@ display_width: int 6
..@ labels : Named num [1:2] 1 2
.. ..- attr(*, "names")= chr [1:2] "female" "male"
$ attend : num [1:15] 9 1 12 27 32 35 28 17 21 24 ...
..- attr(*, "format.spss")= chr "F8.0"
df16

A tibble: 15 x 4
snum religion gender attend
<dbl> <dbl+lbl> <dbl+lbl> <dbl>
1 1 1 [protestant] 1 [female] 9
2 2 1 [protestant] 1 [female] 1
3 3 1 [protestant] 2 [male] 12

16

4 4 2 [catholic] 1 [female] 27
5 5 2 [catholic] 2 [male] 32
6 6 2 [catholic] 2 [male] 35
7 7 3 [jewish] 1 [female] 28
8 8 3 [jewish] 1 [female] 17
9 9 3 [jewish] 2 [male] 21
10 10 4 [muslim] 1 [female] 24
11 11 4 [muslim] 1 [female] 31
12 12 4 [muslim] 2 [male] 29
13 13 5 [other] 1 [female] 1
14 14 5 [other] 1 [female] 22
15 15 5 [other] 2 [male] 14

Also note that in reading this same SPSS .sav as we did above with read.spss, that here the religion and
gender variables are numeric values, but they are indicated to have labels associated with them. This means
that the tibble is structured much like the SPSS system file in that the numeric codes are the core value but
value labels are retained (called attribute names).

If we convert the tibble to a data frame by nesting the as.data.frame function around the read_sav function
you will see that the attribute names are retained - they are not a tibble property but a general data frame
property. The nice feature is that read_sav implements them directly, unlike read.spss as we saw above.
df17 <- as.data.frame(read_sav("illustr2_5.sav"))
str(df17)

'data.frame': 15 obs. of 4 variables:
$ snum : num 1 2 3 4 5 6 7 8 9 10 ...
..- attr(*, "format.spss")= chr "F8.0"
$ religion: dbl+lbl [1:15] 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5
..@ format.spss: chr "F8.0"
..@ labels : Named num 1 2 3 4 5
.. ..- attr(*, "names")= chr [1:5] "protestant" "catholic" "jewish" "muslim" ...
$ gender : dbl+lbl [1:15] 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
..@ format.spss : chr "F6.0"
..@ display_width: int 6
..@ labels : Named num 1 2
.. ..- attr(*, "names")= chr [1:2] "female" "male"
$ attend : num 9 1 12 27 32 35 28 17 21 24 ...
..- attr(*, "format.spss")= chr "F8.0"
df17

snum religion gender attend
1 1 1 1 9
2 2 1 1 1
3 3 1 2 12
4 4 2 1 27
5 5 2 2 32
6 6 2 2 35
7 7 3 1 28
8 8 3 1 17
9 9 3 2 21
10 10 4 1 24
11 11 4 1 31
12 12 4 2 29
13 13 5 1 1
14 14 5 1 22

17

15 15 5 2 14

I have not found a way to read the value labels as the core values for categorical variables with read_spss
(e.g., religion and gender here). If one needs to do this, then read.spss may be a better choice. This is an
important issue because using a categorical variable would typically be used as a factor in analyses such as
IVs in regression or in ANOVAs.

Reading .sav files with read_sav will apparently only produce a tibble with those variables as numerics and
they would have to be converted to factors afterwards, even if the conversion to a data frame is done as with
df17 here. So, this code chunk does the conversions and then uses the variables in a regression. We see in
the results (fit2) that the five level religion factor has four indicator variables listed, and this is the correct
analysis. Fit1 (commented out before the conversion) would be an improper analysis that used religion as a
single numeric variable.
#fit1 <- lm(attend ~ religion + gender, data=df15)
df17$religion <- as.factor(df17$religion)
df17$gender <- as.factor(df17$gender)
fit2 <- lm(attend ~ religion + gender, data=df17)
summary(fit2)

##
Call:
lm(formula = attend ~ religion + gender, data = df17)
##
Residuals:
Min 1Q Median 3Q Max
-10.2667 -3.0333 -0.4667 2.6667 10.7333
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.267 3.913 1.601 0.14375
religion2 22.933 5.407 4.242 0.00217 **
religion3 14.667 5.277 2.780 0.02141 *
religion4 20.667 5.277 3.917 0.00353 **
religion5 5.000 5.277 0.948 0.36809
gender2 3.200 3.540 0.904 0.38953

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.462 on 9 degrees of freedom
Multiple R-squared: 0.7731, Adjusted R-squared: 0.647
F-statistic: 6.132 on 5 and 9 DF, p-value: 0.00961

7.2 haven templates for SAS and Stata
The help pages for these functions are important to read.

First, read SAS .sas7bdat or .sas7cdat files:
df18 <- read_sas("filename.sas7bdat")

Next, read Stata .dta files:
df18 <- read_stata("filename")

18

7.2.1 Comments on the haven functions

Please note that there is much more to the capabilities of these haven functions than is illustrated here.
And there is additional flexibility provided by the production of tibbles. However, the limitation noted about
creation of factors when categorical variables are read is a major drawback for the author, not offset by the
ease of use, faster performance and added flexibility of tibble creation. There are ways of converting the value
labels to actual values after the fact, but that is beyond the scope of this document. I would still prefer the
foreign functions.

More information on the haven functions can be found here:

• Scheidel Tutorials

8 Import Excel Spreadsheet Data
There are many methods of importing data from Excel spreadsheets. We will illustrate two in particular,
outline two others, and suggest additional packages to examine.

8.1 Copy/Paste from the Excel spreadsheet
One quick and direct method, albeit less reproducible, is to highlight an array of values in the Excel spreadsheet
and copy. Then the following use of read.table can create a data frame. The reader should also note that
the copy could be done from other applications such as an ascii text editor (e.g., notepad++). The primary
downside of this method is that it requires another app to be installed and open.
df19 = read.table("clipboard")

8.2 Save Excel files to .csv format
An indirect method is to save the relevant Excel worsheet/array to a .csv file and then use one of the previous
methods for reading .csv files. This creates an extra step and extra file, but .csv files are easy to work with.

8.3 Using the xlsx package
When reading data from a spreadsheet such as Excel is done, the user may have to specify which worksheet
contains the data to be read - unless the spreadsheet only has one worksheet. Worksheets can be identified
by number or name.

The read.xlsx function from xlsx handles Excel spreadsheets well, and fairly accurately determines the
class of each variable. The example shown here, uses the same data set as above, but in Excel format. The
sheet is defined as the first worksheet in the file.
df20 <- xlsx::read.xlsx("illustr2_5b.xlsx",

sheetName=1)
df20

religion gender attend
1 1 female 9
2 1 female 1
3 1 male 12
4 2 female 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male 21
10 4 female 24

19

https://tutorials.methodsconsultants.com/posts/reading-sas-spss-or-stata-files-into-r-using-haven/

11 4 female 31
12 4 male 29
13 5 female 1
14 5 female 22
15 5 male 14

Here, using tidyverse methods from the readxl package, the worksheet is defined by its name rather than its
numeric position as we illustrated in the prior example.
df21 <- readxl::read_excel("illustr2_5b.xlsx",

sheet="illustr2_5b")
df21

A tibble: 15 x 3
religion gender attend
<dbl> <chr> <dbl>
1 1 female 9
2 1 female 1
3 1 male 12
4 2 female 27
5 2 male 32
6 2 male 35
7 3 female 28
8 3 female 17
9 3 male 21
10 4 female 24
11 4 female 31
12 4 male 29
13 5 female 1
14 5 female 22
15 5 male 14

Both of these latter methods work well in most circumstances, but remember that the tidyverse functions
produce a tibble (df21), but read.xlsx produces a data frame (df20). Verify that assertion with this code:
str(df20)

'data.frame': 15 obs. of 3 variables:
$ religion: num 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr "female" "female" "male" "female" ...
$ attend : num 9 1 12 27 32 35 28 17 21 24 ...
str(df21)

tibble [15 x 3] (S3: tbl_df/tbl/data.frame)
$ religion: num [1:15] 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr [1:15] "female" "female" "male" "female" ...
$ attend : num [1:15] 9 1 12 27 32 35 28 17 21 24 ...

Two other packages are also commonly used for Excel data file import, but will only be listed here: XLConnect
and openxlsx.

Additional Details are available in many resources:

• STHDA tutorial

• Tidyverse readxl package documentation

• Stats and R Blog

20

http://www.sthda.com/english/wiki/r-xlsx-package-a-quick-start-guide-to-manipulate-excel-files-in-r
https://readxl.tidyverse.org/
https://www.statsandr.com/blog/how-to-import-an-excel-file-in-rstudio/

• Milano R

• Datacamp

9 Converting tibbles to data frames
It is worthwhile to be redundant on this topic with what was shown in earlier code to reinforce the simplicity
of the conversion.

A simple method exists for conversion of tibbles to data frames if the analysis requires a data frame. Recall
that df21 above was created by read_excel which produces a tibble. We can look at the “structure” of the
tibble (df21) and verify that it is a tibble. Then we can convert it to a data frame (new object called df21b)
and verify by looking at the “structure”:
str(df21)

tibble [15 x 3] (S3: tbl_df/tbl/data.frame)
$ religion: num [1:15] 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr [1:15] "female" "female" "male" "female" ...
$ attend : num [1:15] 9 1 12 27 32 35 28 17 21 24 ...
df21b <- as.data.frame(df21)
str(df21b)

'data.frame': 15 obs. of 3 variables:
$ religion: num 1 1 1 2 2 2 3 3 3 4 ...
$ gender : chr "female" "female" "male" "female" ...
$ attend : num 9 1 12 27 32 35 28 17 21 24 ...

10 Data Tables
In addition to data frames and tibbles, another data structure used in data science is managed by the
data.table package. There are read and write capabilities to work with data tables in this package and it
provides a robust suite of alternatives to base and tidyverse functions for data management. The biggest
advantage of using data tables is the speed of import and processing during data wrangling procedures. I
don’t see it used much in psychological research circles, so no examples or exposition are included here.
However, a few links to online resources are an entry point into learning about it. Its users are enthusiastic
about its capabilities.

• An Introdution to data.table

• Beginner’s guide to data.table

• data.table and magrittr pipes, the best of both worlds

• Data Table Tutorial

• DataCamp: The data.table R Package Cheat Sheet

11 Importing data from Databases
Skills for importing data from databases have become critical in the broader Data Science world. In the
scientific research world it is a less pressing skill and so will not be illustrated in detail here. Instead, just
methods are described.

21

http://www.milanor.net/blog/read-excel-files-from-r/
https://www.datacamp.com/community/tutorials/r-data-import-tutorial#Getting
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://www.machinelearningplus.com/data-manipulation/datatable-in-r-complete-guide/
https://martinctc.github.io/blog/using-data.table-with-magrittr-pipes-best-of-both-worlds/
https://www.listendata.com/2016/10/r-data-table.html
https://www.datacamp.com/community/tutorials/data-table-cheat-sheet

11.1 Importing Relational Databases
A few tutorials and other resources are recommended for importing from MonetDB, SQL and other relational
databases:

• CRAN Task Views on Databases with R

• ProjectPro Tutorial

• RStudio tutorial on MySQL connections from R

• Tutorial on using MySQL databases with R

11.2 Importing from non-relational data bases
A few worthwhile sites:

• CRAN Task Views on Databases with R

• ProjectPro Tutorial

• Reading MonetDB databases with dplyr

• R and MongoDB

12 Importing data from tables in web pages (HTML tables)
R can import data that are found in HTML tables on web pages. The XML package has a function called
readHTMLTable that appears to be simple to use. But extracting exactly what you want after obtaining the
table may require some work. Here is a detailed explanation in a question posed on StatOverflow:

• StackOverflow Example with NFL Fantasy Football

A second method is argued to be an “improved” approach, using the htmltab package:

• Read HTML Tables with htmltab()

13 Web scraping
Data in unstructured formats on web pages (HTML tags) are common sources of information. Web scraping
is a general approach to obtaining that infomration and structuring it. The most common method for doing
this in R is the use of the rvest package. Here are some tutorials:

• Beginner’s guide to web scaping in R using rvest

• Tidy web scraping in R - Tutorial and resources

• Practical Introduction to Web Scraping in R

14 Text Mining
Textual analysis is a major field that is beyond the scope/goals of this document, but a few web sites can
provide a very good start:

• A light introduction to text analysis in R

• The five packages you should know for text analysis in R

• Text Mining and the tidytext package in R

22

https://cran.r-project.org/web/views/Databases.html
https://www.dezyre.com/data-science-in-r-programming-tutorial/r-tutorial-importing-data-from-relational-database
https://db.rstudio.com/databases/my-sql/
https://programminghistorian.org/en/lessons/getting-started-with-mysql-using-r
https://cran.r-project.org/web/views/Databases.html
https://www.dezyre.com/data-science-in-r-programming-tutorial/r-tutorial-importing-data-from-relational-database
https://www.monetdb.org/Documentation/UserGuide/MonetDB-R
https://statcompute.wordpress.com/2013/06/08/r-and-mongodb/
https://stackoverflow.com/questions/39058164/reading-table-from-https-webpage-using-readhtmltable
https://cran.r-project.org/web/packages/htmltab/vignettes/htmltab.html
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://towardsdatascience.com/tidy-web-scraping-in-r-tutorial-and-resources-ac9f72b4fe47
https://blog.rsquaredacademy.com/web-scraping/
https://towardsdatascience.com/a-light-introduction-to-text-analysis-in-r-ea291a9865a8
https://towardsdatascience.com/r-packages-for-text-analysis-ad8d86684adb
https://www.tidytextmining.com/

15 Handling date and time values
One topic that requires additional background beyond the scope of this document is how R handles date and
time data. Coding and conversions among types of date/time values is a major topic of it’s own. Several good
starting points on the internet are listed here, but first I show simple code for determining the date/time at
the present moment in R.
Sys.time()

[1] "2021-07-28 08:14:37 EDT"
Sys.Date()

[1] "2021-07-28"

• Using Dates and Times in R

• Time data types in R

• Ch 16 from Grolemund/Wickham R for Data Science text

• Date and Time Values in R

• Package datetime

16 Write data frames to .txt, .csv, or Excel files
Data objects in R can be written to external files. Here are a few functions that permit that:

• write.csv: base system function to write a .csv with comma separation and header

• write.table: base system function to write an ascii text file

• write_csv: readr package function (tidyverse)

• write_tsv: readr package function for tab-delimited text (tidyverse)

• write_excel_csv: readr package function (tidyverse)

• write_xlsx: write_xl package function (tidyverse)

• write_sav: haven package function for SPSS (tidyverse)

• write_sas: haven package function SAS (tidyverse)

17 Saving or exporting .csv files from SPSS
Since many of the users of this document will be frequently working with SPSS, it is helpful to include a
section on how to export SPSS data files to .csv files. THIS IS A HIGHLY RECOMMENDED METHOD.
CSV FILES ARE A STABLE METHOD OF MOVING DATA BETWEEN OTHER APPLICATIONS AND
R. There are a few options in the export process that are helpful to be aware of and are illustrated with
screen captures here.

First is a repeat of the earlier screen shot of the religion/gender/attend data file showing the numerically
coded religion and gender variables.

23

http://www.noamross.net/archives/2014-02-10-using-times-and-dates-in-r-presentation-code/
https://www.cyclismo.org/tutorial/R/time.html
https://r4ds.had.co.nz/dates-and-times.html
http://rstudio-pubs-static.s3.amazonaws.com/263827_1aa5cdcfec734d87b5f2d7b88ee165b6.html
https://cran.r-project.org/web/packages/datetime/datetime.pdf

Then, the screen shot of the same data set showing the value labels for those variables:

When exporting to a .csv file, one has the option of saving the values as numerics for religion and gender or
as the value label strings. The latter will typically be preferred for use in R.

From the File-Export menu choice in SPSS choose the “CSV DATA” option. A dialog box should appear
looking something like the following. In addition to choosing the file name and perhaps location to save the
file, we need to change two items.

First, change the Encoding to “Local Encoding”. Failure to do this can result in a problem shown at the end

24

of this section.

Also, use the checkbox to save Value Labels instead of numeric values for those categorical variables for which
one has included value labels.

The Variables tab gives control over which variables are to be included/dropped in the .csv file. No more
effort is required. Just click the save button.

Reading that newly created file with read.csv or read_csv will produce a data frame or tibble, respectively:
df22 <- read.csv("illustr2_5.csv", stringsAsFactors=TRUE, na.strings=c(""))
df22

snum religion gender attend
1 1 protestant female 9
2 2 protestant female 1
3 3 protestant male 12
4 4 catholic female 27
5 5 catholic male 32
6 6 catholic male 35
7 7 jewish female 28
8 8 jewish female 17
9 9 jewish male 21
10 10 muslim female 24
11 11 muslim female 31
12 12 muslim male 29
13 13 other female 1
14 14 other female 22
15 15 other male 14

The following code would read the data with read_csv, the tidyverse option, and convert the character
vectors to factors (df22b would be a tibble):
df22b <- read_csv("illustr2_5.csv")

25

Rows: 15 Columns: 4

-- Column specification --
Delimiter: ","
chr (2): religion, gender
dbl (2): snum, attend

##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
df22b <- mutate_if(df22b, is.character, factor)
df22b

A tibble: 15 x 4
snum religion gender attend
<dbl> <fct> <fct> <dbl>
1 1 protestant female 9
2 2 protestant female 1
3 3 protestant male 12
4 4 catholic female 27
5 5 catholic male 32
6 6 catholic male 35
7 7 jewish female 28
8 8 jewish female 17
9 9 jewish male 21
10 10 muslim female 24
11 11 muslim female 31
12 12 muslim male 29
13 13 other female 1
14 14 other female 22
15 15 other male 14

18 Issues with Encoding of ascii text files
One infuriating outcome of reading .txt or .csv files that can occur from time to time is the appearance of
odd/extraneous characters in the variable name of the first variable in the data frame. See the appearance of
the “snum” variable here. This occurs because of a way the .txt or .csv file was encoded, and reflects the
presence of what is called a Byte Order Mark. A common way this happens is if export from SPSS fails to
use the “Local” encoding specification as outlined above. Another solution follows here.
df23 <- read.csv("illustr2_5encodingissue.csv")
df23

ï..snum religion gender attend
1 1 1 1 9
2 2 1 1 1
3 3 1 2 12
4 4 2 1 27
5 5 2 2 32
6 6 2 2 35
7 7 3 1 28
8 8 3 1 17
9 9 3 2 21
10 10 4 1 24
11 11 4 1 31

26

12 12 4 2 29
13 13 5 1 1
14 14 5 1 22
15 15 5 2 14

If a BOM is present in the .txt or .csv file, it can be removed by read.csv with a fileEncoding argument.
See the help for the file function (?file) and read the “Encoding section” for details. But this code works
fine. Another document may be provided to B. Dudek’s classes that expands on this problem.
df23b <- read.csv("illustr2_5encodingissue.csv", fileEncoding="UTF-8-BOM")
df23b

snum religion gender attend
1 1 1 1 9
2 2 1 1 1
3 3 1 2 12
4 4 2 1 27
5 5 2 2 32
6 6 2 2 35
7 7 3 1 28
8 8 3 1 17
9 9 3 2 21
10 10 4 1 24
11 11 4 1 31
12 12 4 2 29
13 13 5 1 1
14 14 5 1 22
15 15 5 2 14

19 Saving/loading R data frames, objects, and workspaces
Once data are in R as a saved object, it is helpful to save the object to an R file type so that future use would
not require re-running the import code, but would just require reading the R file. Data frames and tibbles
can be saved to one of two standard data formats—Rdata (sometimes shortened to Rda) and Rds. These
formats are used when R objects are saved for later use. Rdata is used to save multiple R objects (or a whole
workspace), while Rds is used to save a single R object.

19.1 Rds files for single R objects
Both the save and saveRDS functions permits saving .Rds files, requiring only that the data object and
chosen file name be passed as arguments. saveRDS is preferred because of its pairing with readRDS seen
below. This code will save df21 into the .Rds file, in the working directory.
saveRDS(df21, file="df21_tibble.rds")

These saved .rda and .rds files can be read with the load function. However, it is preferred to use readRDS
for .Rds files. This will place the original tibble (or data frame) in the working environment, with the original
object name (df21 in this case), so make sure you don’t overwrite an object that already exists in the working
environment with the same name that you inadvertently used again. This is why it is helpful to include the
object name in the file name.
readRDS("df21_tibble.rds")
or to use a different name for the object
newdf <- readRDS("df21_tibble.rds")

27

19.2 Tips on file naming
Since these save and saveRDS functions will overwrite existing files with the same name, it is good practice
to use date and/or time info in the file name, or version numbers. For example:
saveRDS(df21, file="df21_tibble_july2_2020.rds")

19.3 RData files for multiple R objects or whole workspaces
Saving multiple objects to .Rdata format files is done with the save function:
save(df1, df21, file="df1_df21.Rdata")

Loading .Rdata files is done with the load function.
load("df1_df21.Rdata")

19.4 Saving the whole set of Global Environment Objects - the workspace
It is possible to save the whole workspace at once - all objects in the global environment. This permits
re-establishing the working environment without re-running all of what might be lengthy code sequences to
reproduce those objects. This is best done with the save.image function:
save.image("expt_20_03_july2_2020.Rdata")

Upon exiting RStudio and R there is a dialog box that asks if you want to save the workspace. This
save.image function is what is used. for that. And then, when opening R again (or the RStudio Project)
that workspace is automatically recreated. Using the save.image function as shown here does not result in
the automatic reload - and this can be a useful strategy. To load a saved workspace, use the load function.
load("expt_20_03_july2_2020.Rdata")

20 Using RStudio to directly import data
Recent updates of RStudio have incorporated a menu driven approach to importing data. Many of the
functions outlined above have been incorporated into this capability. It is very slick and easy to use. In
RStudio if the default pane configuration has been unaltered by personal preference changes in options for
the interface, an “Import Dataset” tab is visible under the “Environment” tab in the upper right hand pane.
There, one can choose the file class to be imported and the type of R method to use (base system funtions or
tidyverse functions, etc).

In the ensuing dialog box, the name of the imported object can be specified and then the code that was used
is found in the console and can be copied/pasted for reproducibility.

This method is a good way to begin to learn some optional arguments available in the various functions -
choose the options in the dialog box and look at how the code was written.

This section, perhaps, should have been the first in the document.

21 Documentation for Reproducibility
R software products such as this markdown document should be simple to reproduce, if the code is available.
But it is also important to document the exact versions of the R installation, the OS, and the R packages in
place when the document is created.
sessionInfo()

28

R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19041)
##
Matrix products: default
##
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] dplyr_1.0.7 haven_2.4.1 writexl_1.4.0 readxl_1.3.1 xlsx_0.6.5
[6] readr_2.0.0 foreign_0.8-81 knitr_1.33
##
loaded via a namespace (and not attached):
[1] Rcpp_1.0.7 pillar_1.6.1 compiler_4.1.0 cellranger_1.1.0
[5] forcats_0.5.1 tools_4.1.0 bit_4.0.4 digest_0.6.27
[9] evaluate_0.14 lifecycle_1.0.0 tibble_3.1.3 pkgconfig_2.0.3
[13] rlang_0.4.11 rstudioapi_0.13 cli_3.0.1 DBI_1.1.1
[17] parallel_4.1.0 curl_4.3.2 yaml_2.2.1 xfun_0.24
[21] rJava_1.0-4 stringr_1.4.0 generics_0.1.0 xlsxjars_0.6.1
[25] vctrs_0.3.8 hms_1.1.0 bit64_4.0.5 tidyselect_1.1.1
[29] glue_1.4.2 R6_2.5.0 fansi_0.5.0 vroom_1.5.3
[33] rmarkdown_2.9 tzdb_0.1.2 purrr_0.3.4 magrittr_2.0.1
[37] ellipsis_0.3.2 htmltools_0.5.1.1 assertthat_0.2.1 utf8_1.2.2
[41] stringi_1.7.3 crayon_1.4.1

29

	Introduction
	Flat Text Files such as .txt or .csv
	Proprietary binary file types such as .xlsx or .sav

	The R Environment for this Document
	Folders, directories, projects and file locations
	Setting The Working Directory
	Using the file.choose() function

	Import text files such as .txt or .csv using Base R methods
	Using read.table
	Using read.csv
	using read.delim
	Using read.csv2 and read.delim2
	Handling missing data in reading .csv files
	Additional Detailed information on the read. family of functions

	Import text files such as .txt or .csv using Tidyverse methods
	using read_table and read_csv for ascii text files

	Import Commercial Statistical Software Data Files using foreign
	Importing data from SPSS
	Templates for importing from SAS, Stata, Systat, Minitab

	Commercial Statistical Software Data Files (SPSS, STATA, SAS) using Tidyverse methods
	Read SPSS .sav file with read_sav or read_spss
	haven templates for SAS and Stata
	Comments on the haven functions

	Import Excel Spreadsheet Data
	Copy/Paste from the Excel spreadsheet
	Save Excel files to .csv format
	Using the xlsx package

	Converting tibbles to data frames
	Data Tables
	Importing data from Databases
	Importing Relational Databases
	Importing from non-relational data bases

	Importing data from tables in web pages (HTML tables)
	Web scraping
	Text Mining
	Handling date and time values
	Write data frames to .txt, .csv, or Excel files
	Saving or exporting .csv files from SPSS
	Issues with Encoding of ascii text files
	Saving/loading R data frames, objects, and workspaces
	Rds files for single R objects
	Tips on file naming
	RData files for multiple R objects or whole workspaces
	Saving the whole set of Global Environment Objects - the workspace

	Using RStudio to directly import data
	Documentation for Reproducibility

