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Preface

This document can be a standalone “how-to” document for R users. However,
it is primarily intended for students in the APSY510/511 statistics sequence
at the University at Albany. It is a fairly thorough treatment of graphical
and inferential evaluation of one-factor designs. It presumes prior background
coverage of the repeated measures ANOVA logic from standard textbooks such
as Howell (2013), Keppel (2004), or Maxwell, Delaney and Kelley (2017). The
analyses are intended to parallel and exhaust the methods already covered with
SPSS, and to extend them to many additional topics.

This book/monograph uses the bookdown package (Xie, 2020a) for R (R Core
Team, 2020), which was built on top of rmarkdown (Allaire et al., 2020) and
knitr (Xie, 2015). RStudio (RStudio Team, 2015) was used for all writing and
R programming.
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Chapter 1

Background and R Setup

The goal of this document is provision of a template for using R to evaluate data
from a 1-factor repeated measures design that is often called a within-subjects
problem. Rather than providing one data point for a DV measurement as was
the case for the “between-groups” design, each case provides more than one
measurement since they are measured “repeatedly”.

The standard R axiom that there are always multiple ways of performing any
task is never more accurate than with the ANOVA models. Beginning with
graphical depiction and extending to standard NHST inferences, contrast anal-
ysis and post hoc tests, and evaluation of assumptions, etc., we can add to
that list major divisions in approaches to repeated measures analysis, and this
document could become very very long.

This document

• Is intended for use by APSY511 course at the University at Albany, but
can be more broadly used by data analysts.

• Is a fairly full one-factor repeated measures anova exposition for a five
category design.

• Implements graphical summaries and numerical descriptions in an EDA
section.

• Approaches ANOVA as linear modeling and is supplemented with analyt-
ical contrasts, and multiple comparison tests.

• Includes a section on the Multivariate approach to the repeated measures
problem.

• Provides templates for both the traditional Univariate/GLM approach as
well as linear mixed models approaches.

• Includes graphical and inferential evaluation of assumptions.
• Provides brief illustrations of Bayes Factor, resampling, and robust meth-

ods, as well as a non-parametric approach.
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One primary philosophy drives much of this document: repeated measures
ANOVA is not dead. It can be very useful in experimental design situations
where there are no missing data. Otherwise, linear mixed effects models have
an advantage. The traditional methods are much criticized on the basis of
flawed error terms when non-sphericity is present. Adjustment method such as
Greenhouse-Geisser and Huynh-feldt are looked at with disdain in some quar-
ters. However, an overarching perspective on ANOVA can argue that omnibus
effects are the least interesting parts of an analysis. Follow up analyses employ-
ing contrasts (and in factorial designs, contrasts on main effects, interactions
and simple main effects) are valuable tools. With the implementation of spe-
cific error terms the tests of those contrasts are not subject to the non-sphericity
consequences (see the contrasts sections below for citations). Since the GG and
HF methods seem to be looked down upon by mixed effects modelers, it be-
comes a non-issue if the focus is on contrast analysis, perhaps instantiated with
orthogonal sets. This recommendation is also informed by an understanding
that mixed effects modeling of contrasts is a somewhat fuzzy area where clear
additional understanding is required. That said, the document also contains
some rudimentary linear mixed modeling approaches.

The document is always under development.

One of the primary goals is to reproduce all the work we have accomplished
with the SPSS GLM, and MANOVA procedures (and then some).

Several R packages are required:
#if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#BiocManager::install("Biobase", version = "3.8")

knitr::opts_chunk$set(echo = TRUE, warning=FALSE)
# load packages and import data
library(afex)
library(BayesFactor)
library(car)
library(emmeans)
library(ez)
library(foreign)
library(ggplot2)
library(ggthemes)
library(granova)
library(gt)
library(kableExtra)
library(knitr)
library(lme4)
library(multcomp)
library(nlme)
library(nortest)
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library(permuco)
library(phia)
library(plyr)
library(psych)
library(rmarkdown)
library(Rmisc)
library(sciplot)
library(sjstats)
library(tidyr)
library(WRS2)

Package citations for packages loaded here (in the above order): afex (Singmann
et al., 2020), BayesFactor (Morey and Rouder, 2018),
car (Fox et al., 2020), emmeans (Lenth, 2020), ez (Lawrence, 2016), ggplot2
(Wickham et al., 2020), ggthemes (Pruzek and Helmreich, 2014), granova
(Pruzek and Helmreich, 2014), gt (Iannone et al., 2019), kableExtra (Zhu,
2019), knitr (Xie, 2020b), lme4 (Bates et al., 2019), multcomp (Hothorn et al.,
2020), nlme (Pinheiro et al., 2020), nortest (Gross and Ligges, 2015), per-
muco (Frossard and Renaud, 2019), phia (De Rosario-Martinez, 2015), psych
(Revelle, 2020), rmarkdown(Allaire et al., 2020), Rmisc(Hope, 2013), sciplot
(Morales et al., 2020), sjstats (Lüdecke, 2020), tidyr(Wickham and Henry,
2020), WRS2 (Mair and Wilcox, 2020)

1.1 A note on R functions and usage style
With the large set of packages needed for a suite of functions used in this docu-
ment, it can often be confusing to the novice R user to sort out which package a
particular function comes from. I have used two strategies to aid in avoidance of
this confusion. Often, in introductory text in a section, I refer to a “function
from a package (e.g., bar from foo). In other places I use the double colon
convention to call a function from its package. For example”psych::describe”
calls the describe function from the psych package. In cases where neither
method of specification exists, that would typically mean that the function is in
the base set of R packages that are installed on initial setup. For example, aov
is in the base system stats package and is used without specifying that.

1.2 Resources
The following list will provide a good start for those needing a broader back-
ground in ANOVA techniques and more detailed sources for the primary pack-
ages employed in this document.

In addition, the following internet resources can be helpful.

• Salvatore S. Mangiafico’s R Companion: https://rcompanion.org/
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handbook/I_09.html
• http://dwoll.de/rexrepos/posts/anovaRBp.html
• http://www.jason-french.com/tutorials/repeatedmeasures.html
• https://www.datanovia.com/en/lessons/repeated-measures-anova-in-

r/#one-way-repeated-measures-anova
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Chapter 2

Import data set and do
Exploratory Data Analysis

Many applications of repeated measures designs involve simply tracking partic-
ipant across time and measuring the DV at fixed time points. It is also possible
to employ such a design when the IV is a manipulated variable. The levels of the
repeated factor thus represent different “treatment” conditions. The primary
example data set used here is of this latter type. In such experiments, the order
of treatments is often randomized across participants/subjects. The data set
used here is a textbook example, taken from the Keppel textbook (Keppel and
Wickens, 2004, exercise #1, Ch. 16, pp 366-367).

The study outlined in the exercise presumed to evaluate an appetitive behavior
among rats, tongue protrusion (called DV in the data set). Tongue protrusions
are also used in social situations, presumably as part of a chemical senses system
for evaluating airborne molecules that may carry social significance. Accordingly,
a study was designed where rats were exposed to bedding types. Two control
types of conditions were employed, clean bedding and bedding from the rat’s
own home cage. Three other conditions were bedding from other species, iguana,
whiptail lizard, and kangaroo rat. The IV (called “type” in the data frame)
thus had five levels, with each of ten subjects being measured under each level,
making the study a simple one-factor repeated measures design.

Other data sets are used for explicit purposes in other sections of this document.

2.1 Data Import
Many of the methods for repeated measures analysis require the “long” format
data file. This is available as a .csv file and is imported with the code found
below. In a separate document/tutorial, the conversion from wide to long format
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(or vice versa) is illustrated. There are several ways of doing this conversion in
R, but at the time of this writing, tidyverse tools are the most convenient. The
pivot_longer and pivot_wider functions in the tidyr package are useful ways
to execute the conversion, but other methods are also illustrated in the separate
tutorial document.

This code imports the primary data file, and the code chunk also designates the
“snum” case number variable as a factor since that is required in most of the
analyses to follow in later chapters. It is imported as a numeric variable. In
addition, the ordering of the “type” levels is changed from the default alpha-
betical to match prior graphical work with the data set and prior analyses and
analyses using contrasts in SPSS.
# read data set - long form exported from SPSS
rpt1.df <- read.csv("data/1facrpt_long.csv", stringsAsFactors=TRUE)
# change the snum variable to a factor variable (was numeric)
rpt1.df$snum <- as.factor(rpt1.df$snum)
# change the order of the factor levels of type to match the
# original order and match our prior SPSS work,
# including setting up contrasts
rpt1.df$type <- ordered(rpt1.df$type,

levels=c("clean","homecage","iguana",
"whiptail", "krat"))

# look at a few lines from the data frame
headTail(rpt1.df)

## snum type DV
## 1 1 clean 24
## 2 1 homecage 15
## 3 1 iguana 41
## 4 1 whiptail 30
## ... <NA> <NA> ...
## 47 10 homecage 7
## 48 10 iguana 4
## 49 10 whiptail 7
## 50 10 krat 23

2.2 Numerical Exploratory Data Analysis
Using describeBy from the psych package, we can now examine a few descrip-
tive statistics for the five conditions. Note that only a subset of the statistics
produced by describeBy are requested, and the resultant table is more nicely
formatted using gt. The summaries are also split into two tables to control the
width of the tables.
d1 <- describeBy(rpt1.df$DV, group=rpt1.df$type,

type=2, mat=T)[,c(2,4:9)]
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gt(d1)

group1 n mean sd median trimmed mad
clean 10 6.8 7.177124 6.5 5.500 5.1891
homecage 10 6.0 5.676462 5.5 5.625 6.6717
iguana 10 7.3 12.445883 3.0 4.000 4.4478
whiptail 10 9.4 8.796464 6.5 8.000 7.4130
krat 10 23.1 18.174769 16.5 22.125 10.3782

d2 <- describeBy(rpt1.df$DV, group=rpt1.df$type,
type=2, mat=T)[,c(2,10:15)]

gt(d2)

group1 min max range skew kurtosis se
clean 0 24 24 1.5779391 3.4183872 2.269606
homecage 0 15 15 0.6150626 -0.7291575 1.795055
iguana 0 41 41 2.6438283 7.4942010 3.935734
whiptail 0 30 30 1.4989085 2.7856163 2.781686
krat 0 54 54 0.7791971 -0.6475045 5.747367

2.3 Graphical EDA
Simple boxplots are readily obtained wtih this long-format data set. The
DV~type model specification is possble because of this long-format data struc-
ture, even though the “type” variable is not variable based on different groups
of participants.
boxplot(DV~type, data=rpt1.df)
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One EDA plot that is often used for repeated measures designs is called a profile
plot. It is a simple line graph where each case is represented by one line. This
type of plot is argued to enable a visual comparision of the patterns across
conditions and the assesment of how consistently the cases show the overall
pattern. The negative aspect of the plot is that for a study like this where the
IV is categorical, the shape of the lines is actually meaningless. If the repeated
measure factor were Time, then such a plot would have greater value. Recall
that the placement of the categories along the X axis is actually arbitrary here,
so the profiles have no intrinsic meaning - they just permit a comparison of
cases to one another. Also, apologies for the non-colorblind friendly palette of
colors used for the lines…….. (see a later section of this chapter for a method of
control of color palettes in ggplot).
#library(ggplot2)
ggplot(rpt1.df, aes(type, DV, colour=snum)) +
geom_point(size = 2.5) +
geom_line(aes(group = snum), linewidth = 1) +
theme_minimal()
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When the repeated factor is categorical rather than quantitative (like time), it
is almost expected that the data be summarized graphically with bar graphs
plotting the means with error bars (of some sort) added. This plot, also called
a dynamite plot, has received considerable criticism as we have discussed. The
bargraph.CI function can readily draw such a graph, as easily as we saw it
done for between-groups designs - this is enabled because of the long-format
structure of the data file.

Note that those std errors of the mean are based on between subject variation
and have no specific usage in regard to the omnibus inferential tests performed
in chapter 3 and later.
#require(sciplot)
bargraph.CI(rpt1.df$type,rpt1.df$DV,lc=TRUE, uc=TRUE,legend=T,

cex.leg=1,bty="n",col="gray75",
ylim=c(0,33),
xlab="Stimulus Type",
ylab="Mean DV Score",main="DV by Stimultus type with Std Error Bars",
cex.names=1.25,cex.lab=1.25)

box()
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2.4 Graphical EDA with ggplot2: boxplots and
bar graphs with error bars

Alternative approaches to boxplots and bar graphs (with error bars) are available
with the ggplot2 package. This section also includes demonstration of a violin
plot that includes the mean plus error bars. An important section subsequent
to this one explores alternative definitions of standard errors for within-subjects
(repeated measures) factors.

First I show a ggplot version of the boxplot to reinforce the idea that the
ggplot2 package is a useful tool. The core of the plot is drawn with the first
two lines of the ggplot function code, and the remainder of the lines of code
control stylistic attributes of the plot. A vector of colorblind-friendly color
codes is established first and then used for the “fills”. Other commented lines of
code show other ways of controlling the color scheme. The reader should note
that since the categories are labeled, the use of color here is superfluous and
probably should be avoided. It provided an opportunity to illustrate the use of
a colorblind friendly palette. See, for example:

• http://mkweb.bcgsc.ca/colorblind/
• http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-

friendly-palette
# first, establish a colorblind friendly palette
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73",
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"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
p2<-ggplot(data = rpt1.df, aes(x = type, y = DV, fill=type)) +
geom_boxplot() +xlab("Stimulus Type") + ylab("DV") +
scale_fill_manual(values=cbPalette) +
#scale_fill_brewer(palette="Paired") +
#scale_colour_grey() + scale_fill_grey() +
ggtitle("Boxplots of Tongue Protrusions by Stimulus Type") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p2
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Boxplots of Tongue Protrusions by Stimulus Type

The traditional bar graph to depict means with standard error bars (or CI’s)
can also be achieved with ggplot. In order to create this graph, the summary
statistics have to be extracted from the data set. Means, standard errors, and
CI’s are obtained from long-format data frames with the summarySE function
from the Rmisc package. The error bars are then plotted one “se” or one “ci”
up and down from the mean. The variable in the summarySE-produced data
frame called “DV” is actually the man of the condition. The variable called “ci”
is the one-sided distance from the mean to an upper or lower confidence limit
(95% here).
rpt1summary.b <- Rmisc::summarySE(rpt1.df,

measurevar="DV",
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groupvars="type",
conf.interval=.95)

rpt1summary.b

## type N DV sd se ci
## 1 clean 10 6.8 7.177124 2.269606 5.134205
## 2 homecage 10 6.0 5.676462 1.795055 4.060696
## 3 iguana 10 7.3 12.445883 3.935734 8.903248
## 4 whiptail 10 9.4 8.796464 2.781686 6.292611
## 5 krat 10 23.1 18.174769 5.747367 13.001446

The values from this data frame are then used to draw the graph:
p3 <- ggplot(rpt1summary.b, aes(x=type, y=DV, fill=type)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=DV-se, ymax=DV+se),

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus Between-Subject error bars of Tongue Protrusions by Stimulus Type") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p3
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Means plus Between−Subject error bars of Tongue Protrusions by Stimulus Type

Another possibility is to draw violin plots for each condition and to also display
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the means and standard errors (or confidence intervals as I did here). Notice
that with the floor of zero, one of the CI’s actually extends to a non-sensical
value - a frequent occurrence when the distribution is skewed with a mean close
to zero. This will be a more helpful plot when sample sizes are larger and the
densities are not dominated by small numbers of points in regions of the Y axis
DV scale.
p4 <- ggplot(rpt1.df, aes(x=type, y=DV)) +
geom_violin() +
geom_point(aes(y=DV),data=rpt1summary.b, color="black") +
geom_errorbar(aes(y=DV, ymin=DV-ci, ymax=DV+ci),

color="black", width=.05, data=rpt1summary.b)+
ggtitle("Violin plots with means plus between-Subject 95% CI's") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p4
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Violin plots with means plus between−Subject 95% CI's

Showing the raw data is always a good thing. The profile plot above shows
this, but here we see how to create a traditional bar chart of the means with
raw data points added.
p4b <- ggplot(rpt1summary.b, aes(x=type, y=DV)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_point(aes(y=DV, x=type), data=rpt1.df,color="black", size=2) +
ggtitle("Means plus raw data points, by condition") +
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guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p4b
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Means plus raw data points, by condition

2.5 What are the proper error bars for a plot of
a within-subjects design?

There is a literature concerning the correct choice for error bars to display in
the kinds of plots shown above with repeated measures designs. The issues are
twofold and relate to the origin of the reason for displaying error bars. First,
what is the purpose of displaying error bars? Sometimes they are employed
simply to show an index of dispersion with a group, or within a condition as
is the case for a repeated measures factor level. Error bars that are standard
deviations can accomplish this, but showing the raw data as we saw above is
also a good choice. At other times error bars are employed to provide a method
of “inference by eye” (Cumming and Finch, 2005) by visualization of the degree
of overlap of error bars, confidence intervals and means.

In the plots drawn above, depicting means plus/minus error bars or confidence
intervals, the “error” is derived from the “subject” variation at each level of the
repeated factor (each condition). However, this is not the error that is related
to any of the inferences done regarding variation in means in such designs. In
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fact, the whole purpose of the repeated measures design is to treat it as a
randomized block design where the main effect of “subject”, or case, is pulled
out of the analytical system and the remaining error that is used is the condition
by subject interaction (the “Axs” term). So, the standard errors used above are
not helpful because they come from a mix of the main effect of subject and the
condition by subject interaction term - think of subject variation at a level of
the repeated factor as a simple main effect. The sum of the variation of that
set of simple main effects would comprise a pooling of the main effect of subject
and the interaction term. If a descriptive measure of dispersion is desired, then
simple standard deviations might be displayed or better yet, the raw data points.
But if a connection to inferential analyses performed on the data set is the goal,
then a different kind of error bar should be used - one that relates to the Axs
interaction term.

A literature dating back to Tukey has argued for the ability to do “inference by
eye” in order to decide whether two levels of a factor are “significantly” different.
Cumming and Finch (2005) gave specific guidance about the deviation between
means of two conditions relative to std errors or CI’s in order to “see” that two
means would be “significantly” different. For standard errors plotted on means
in bar graphs, the two means would have to be approximately 3 std errors apart
to reach significance at the nominal .05 level. This is the Cumming and Finch
“Rule 7). CI overlap would be approximately 50% for the same conclusion.
But this presumes that the”correct” std error is used (and employed in the
construction of a confidence interval).

2.5.1 The method of Loftus and Masson (1994)
Several decades ago, I began using what I called “generalized standard errors” for
plotting purposes in depiction of means from ANOVA designs (e.g., (Phillips and
Dudek, 1989)). The idea was to generate a standard error of the mean using the
appropriate error term (actually the square root of that MS) and divide by the
square root of the appropriate N. This would give a standard error depiction that
reflected the error that was actually used in the inferences done with ANVOA
methods, rather than the collection of individual group or condition standard
errors such as those depicted above. Over a decade later, Loftus and Masson
(1994) published an article essentially arguing the same thing. The article laid
out the idea that for repeated measures designs, the ANOVA error term (for the
omnibus F test) in a 1-factor design is the condition by subject interaction term
(Axs in the randomized block notation). The square root of this MS, divided
by the square root of N would be a more appropriate standard error to use for
error bars in bar graphs of condition means - and each condition would have
this same standard error placed on the point/bar on the plot.

It is fairly simple to construct such a standard error once the ANOVA is com-
plete. This basic one factor repeated measures ANOVA is explored in detail
in the next chapter, but the analysis is accomplished here in order to find the
MS(Axs) term.
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contrasts(rpt1.df$type) <- contr.sum
fitplot <- aov(DV ~ type + Error(snum/type),data=rpt1.df)
summary(fitplot)

##
## Error: snum
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3740 415.5
##
## Error: snum:type
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 2042 510.4 8.845 4.42e-05 ***
## Residuals 36 2077 57.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard error can be manually created from the MS error term (Axs) found
in the summary table.
wstderr <- (57.7^.5)/(10^.5)

We can use the same summary data frame as above in order to extract the
means from the data set, and employ the manually created standard error value
to draw error bars (+/- 1 std error) on the bars. The same std error is used for
each condition in this plot.
p5 <- ggplot(rpt1summary.b, aes(x=type, y=DV, fill=type)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=DV-wstderr, ymax=DV+wstderr),

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Error bars from Generalized std error using ANOVA Axs error term") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p5
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This generalized standard error has the advantage of being the actually error
variance that is used in the analysis, albeit for the omnibus F test. It is, however,
burdened by the same sphericity assumption that we will see can handicap its
use in that omnibus ANOVA - covered in later chapters.

2.5.2 Alternatives to the Loftus and Masson approach
The Loftus and Masson approach received some criticism (Bakeman and
McArthur, 1996; Morrison and Weaver, 1995) as being too difficult to execute
and perhaps not exactly what was needed (I have found that criticism to
be shallow). An alternative was proposed by Cousineau (2005). This idea
was a method to remove the between subject variation from the error term
with a “normalization” procedure. The approach centered the data for each
subject/case around its own aggregate mean. Thus with this method, each case
would have the same mean, although still varying across the repeated measure
factor. The remaining variation of data points at each level of the repeated
factor would reflect the components of the Axs interaction. Morey(2008)
pointed out a flaw in the “normalization” method and presented a corrected
version. This corrected std error or CI is provided by the summarySEwithin
function in the Rmisc package and that is what is implemented here, first
with the creation of the summary data frame.
rpt1summary.w <- Rmisc::summarySEwithin(rpt1.df,

measurevar="DV",
withinvars="type",
idvar="snum")
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rpt1summary.w

## type N DV sd se ci
## 1 clean 10 6.8 5.258010 1.6627287 3.761354
## 2 homecage 10 6.0 6.467182 2.0451026 4.626343
## 3 iguana 10 7.3 6.518734 2.0614046 4.663221
## 4 whiptail 10 9.4 1.495177 0.4728166 1.069586
## 5 krat 10 23.1 13.202883 4.1751181 9.444773

Now the graph can be redrawn using these “normalized” standard errors or
“normalized” confidenc intervals. This plot uses the standard errors:
p6 <- ggplot(rpt1summary.w, aes(x=type, y=DV, fill=type)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=DV-se, ymax=DV+se),

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus Within-Subject error bars of Tongue Protrusions by Stimulus Type") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p6
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In order to compare, we can add both the between subjects error bar that was
used initially and this “normalized” approach on the same plot. It is clear that
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the corrected standard error will, appropriately, be smaller.
p7 <- ggplot(rpt1summary.w, aes(x=type, y=DV, fill=type)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=DV-se, ymax=DV+se), data=rpt1summary.b,

width=.2, # Width of the error bars
position=position_dodge(.9),
colour="red") +

geom_errorbar(aes(ymin=DV-se, ymax=DV+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus two types of error bars: between (red); within (black)") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p7
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We can also redraw the violin plot redone with CI’s based on the within-subject
std error:
p8 <- ggplot(rpt1.df, aes(x=type, y=DV)) +
geom_violin() +
geom_point(aes(y=DV),data=rpt1summary.w, color="black") +
geom_errorbar(aes(y=DV, ymin=DV-ci, ymax=DV+ci),
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color="black", width=.05, data=rpt1summary.w)+
ggtitle("Violin plots with means plus Within-Subject 95% CI's") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p8
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The Cousineau/Morey method seems to be an improvement on the traditional
“between subjects” standard error initially outlined above, but it too can be crit-
icized. Those individual standard errors are not used anywhere in the analysis,
so it is not clear how meaningful they are. If they are to assist in “inference
by eye”, then they should relate to comparisons between means of different
conditions. They are not directly related to inferences about such comparisons.

2.5.3 Franz and Loftus 2012 approach for pairwise com-
parisons

Franz and Loftus (2012) argued that “normalization method leads to biased
results and is uninformative with regard to circularity.” They made the sim-
ple point that if the desire is to visually compare pairs of means from different
conditions, then the error bars should reflect those pairwise comparisions. And,
comparison of pairs of repeated measure levels is tantamount to performing a de-
pendent samples t-test. So their direct solution is to depict the mean differences
between pairs and use the standard error that is created to perform each of the
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different paired t-tests. In the next section, we will couch this perspective as a
narrowly defined se of analytical contrasts, but for now, it makes considerable
sense.

In order to examine the pairwise comparisons, the first step (as in the dependent
samples t-test) is to create difference scores for each subject/case for each pair of
levels. In the example we are working with here, with five levels of the repeated
measure factor, this produces ten pairs and thus ten new variables. Rather than
labor to obtain those paired difference variables in R with the long-format data
set, I created the ten new variables beginning with a wide format version of the
data file, in Excel, and then saved it to a .csv file.
pairdiffs <- read.csv("data/1facrpt_with_diffs.csv")
pairdiffs

## snum diff2.1 diff3.1 diff4.1 diff5.1 diff3.2 diff4.2 diff5.2 diff4.3 diff5.3
## 1 1 -9 17 6 26 26 15 35 -11 9
## 2 2 0 -6 0 7 -6 0 7 6 13
## 3 3 -4 1 0 5 5 4 9 -1 4
## 4 4 -2 -1 3 7 1 5 9 4 8
## 5 5 0 0 0 0 0 0 0 0 0
## 6 6 7 2 7 30 -5 0 23 5 28
## 7 7 -3 -6 -2 7 -3 1 10 4 13
## 8 8 0 0 11 54 0 11 54 11 54
## 9 9 3 1 1 11 -2 -2 8 0 10
## 10 10 0 -3 0 16 -3 0 16 3 19
## diff5.4
## 1 20
## 2 7
## 3 5
## 4 4
## 5 0
## 6 23
## 7 9
## 8 43
## 9 10
## 10 16

But in order to use ggplot and the summary functions to draw the plot, we need
to convert this wide data frame to a long version, using tools from tidyr. The
pivot_longer function makes this simple. The 10x10 data matrix is now a 100
x 1 data matrix and the data frame has id variables for subject number and pair
identity.
pairs_long <-
tidyr::pivot_longer(data=pairdiffs,

cols=2:11,
names_to="pair",
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values_to="DV")
pairs_long$pair <- as.factor(pairs_long$pair)
pairs_long

## # A tibble: 100 x 3
## snum pair DV
## <int> <fct> <int>
## 1 1 diff2.1 -9
## 2 1 diff3.1 17
## 3 1 diff4.1 6
## 4 1 diff5.1 26
## 5 1 diff3.2 26
## 6 1 diff4.2 15
## 7 1 diff5.2 35
## 8 1 diff4.3 -11
## 9 1 diff5.3 9
## 10 1 diff5.4 20
## # ... with 90 more rows

At this point, we need to compute the traditional standard error for each of the
ten variables since that is the standard error used in the paired t-tests. The
summarySE function from Rmisc accomplishes this as we saw with the “between
subjects” standard errors computed several sections above. Note that division
of the mean (called DV in this data frame) by the “se” yields the t value if
that particular pair were examined with a dependent samples t-test (see a later
chapter).
# treat as BG for different variables (ten of them)
pairs_summary <- Rmisc::summarySE(pairs_long,

measurevar="DV",
groupvars="pair")

pairs_summary

## pair N DV sd se ci
## 1 diff2.1 10 -0.8 4.237400 1.339983 3.031253
## 2 diff3.1 10 0.5 6.450667 2.039880 4.614530
## 3 diff3.2 10 1.3 9.238206 2.921377 6.608614
## 4 diff4.1 10 2.6 4.115013 1.301281 2.943703
## 5 diff4.2 10 3.4 5.541761 1.752459 3.964337
## 6 diff4.3 10 2.1 5.782156 1.828478 4.136306
## 7 diff5.1 10 16.3 16.275749 5.146844 11.642969
## 8 diff5.2 10 17.1 16.251154 5.139066 11.625375
## 9 diff5.3 10 15.8 15.504838 4.903060 11.091493
## 10 diff5.4 10 13.7 12.596737 3.983438 9.011163

Now we can draw a plot that produces the ten means of the paired difference
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score variables. The t-test of each of these paired differences is compared to
a null hypothesis value of zero, so our “inference by eye” approach would ask
whether the CI derived from these standard errors overlaps the null value of
zero. This plot depicts the means with 95% CI’s. We conclude that condition 5
(kangaroo rat) is significantly different from each of the other four conditions.

The main value of taking this paired approach is that (1) the errors associated
with each pair are specific to that comparison and (2) not burdened by the
sphericity assumption.

A downside of this method is that as implemented, it does not take into account
the accumulated error problem of the multiple simultaneous tests, most of which
are probably not a priori hypotheses. Fortunately, the CI could be adjusted with
one of the many bonferroni/holm/FDR methods available.

With this kind of plot, the visual purpose is to compare each mean to the null
hypothesis value of zero, rather than to each other.
p9 <- ggplot(pairs_summary, aes(x=pair, y=DV, fill=pair)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=DV-ci, ymax=DV+ci), data=pairs_summary,

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus std errors for pairwise differences") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p9
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2.6 Conclusions on error bars and plotting
graphs and specific errors for analyti-
cal/orthogonal contrasts

It strikes me that all of this discussion is obviated if the goal of the analysis
is hypothesis driven inference. The method of choice for evaluating specific
hypotheses is the use of analytical contrasts. These contrasts are conceptual
extensions of the paired t-test approach, but are more elegant. They will be
considered in a later chapter of this tutorial, and plots analogous to the paired
difference plot just shown will be created then. That approach can also be
couched in terms of orthogonal sets which may be desireable when concerns
about alpha rate inflation exist.

2.7 Conclusions from EDA
With the EDA, it becomes clear that the rate of tongue protrusion among the
ten rats was fairly consistently low, except for the “krat” condition where it was
higher and more dispersed. Inferential methods for evaluating this pattern are
found in the next several chapters.
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Chapter 3

Traditional Approaches to
One Factor Repeated
Measures Designs

The primary goal of this chapter is the elaboration of the traditional “Uni-
variate” approach to the 1-factor Repeated Measures design, evaluation of it’s
sphericity assumption. These methods have been the topic of considerable dis-
cussion in light of the development of alternatives such as linear mixed effects
modeling. Extreme perspectives even argue that the SS partitioning approach
of the traditional method is “dead” (McCulloch, 2005). We emphasize that
well executed traditional methods, especially those centered on contrast based
hypothesis testing, are sound. Later sections in this and other chapters delve
into alternative methods. A secondary goal of the chapter is provision of code
to implement the multivariate approach to evaluation of the omnibus null hy-
pothesis that all condition means are equal. The multivariate approach is not
burdened with the sphericity assumption that has brought the univariate ap-
proach under strong criticism. The discussion of which of these to use had
been centered around relative power given varying sample sizes and degree of
non-sphericity. That conversation has largely been replaced by strong recom-
mendations to use the linear mixed models approach that is outlined in a later
chapter. An additional major goal of this document is to explore methods for
examining analytical/orthogonal contrasts and pairwise comparison post hoc
tests and the stage will be set to produce those analyses in the next chapter.
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3.1 The traditional “univariate” GLM approach
to the repeated measures problem and the
Multivariate approach

The initial sections here, on the univariate approach, emphasize the implemen-
tation of the repeated measures design as the theoretical sibling of randomized
block designs. It approaches the question in the style of the long litany of ex-
perimental design textbooks such as those by Winer, Kirk, Myers, Keppel, and
Hays, as well as the current comprehensive textbook by Maxwell, Delaney and
Kelley (Howell, 2013; Hays, 1994; Keppel and Wickens, 2004; Kirk, 2013; Myers
et al., 2010; Winer et al., 1991). In this variance partitioning approach, three
sources of variance are identified, owing to the factorial arrangement of the two
factors (IV and “subjects/case”:

1. “treatment”, the repeated measures factor, called “factor A” in the stan-
dard textbook approach.

2. “subject” or case (the “blocking” factor)
3. The Axs interaction term which will serve as the error term for factor A

in this approach.

The theory of the F test from the traditional/univariate approach to omnibus
F test for this this one factor repeated measures design is summarized in this
table:

The Axs interaction is usually listed in software output from R as a “residual”.
It’s characterization here as an interaction stems from the perspective that a 1
factor repeated measures design is a special case of a randomized block design
where the treatment and subject factors are marginal effects (main effects) and
the interaction term is possible because each subject is tested under all treatment
conditions. In many repeated measures studies, the repeated factor (IV) is
characterized simply as a time factor where the same DV is measured at varying
time points. In our first example data set, outlined in the previous chapter, the
IV was actually a collection of five treatment conditions and each participant
was measured under each condition.

The multivariate evaluation approaches the test of the omnibus null hypothesis
in a different way, and it is also illustrated in two of the following sections.

The major challenge in replicating the information set that we learned to derive
from the SPSS MANOVA or GLM procedure is that there is not simply one
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function or a small set of functions that can give us everything. That list
includes:

In this chapter,

1. The omnibus F test of the repeated factor - in some software, this is called
the “averaged F test”

2. Evaluation of the sphericity assumption
3. GG and HF correction factors and adjusted p values
4. Implementation the multivariate approach to evaluation of the omnibus

null hypothesis

In later chapters we will attempt to add:

5. Easy implementation of orthogonal/analytical contrasts
6. Error terms specific to the contrasts
7. Post hoc evaluation of pairwise comparisons among levels

We will piece these analyses together with several different approaches, and
will find that finding correct error terms for contrasts (specific error terms that
permit avoidance of the sphericity assumption) is not easily accomplished.

The multiple different ways of accomplishing the omnibus ANOVA found in
this chapter can be a bit bewildering. The first method uses the standard/basic
approach that employs base system functions. The most efficient approach
is probably Method V, using the afex package. The other methods provide
alternative strategies that can be helpful in some situations.

3.1.1 Method I: Use of the aov function
Structuring the data set in the “long” format as was done in Chapter 2 permits
the standard aov function to partition the variation into the two marginal (main)
effects and the interaction term. This requires only a slight change in the code
structure compared to the use of aov in “between-subjects” designs. The “Error”
argument tells aov that the subject factor is repeated across levels of type. The
notation appears to be similar to what we have learned as “nesting”. However,
subject is not nested within type as the code might imply with the use of the
forward slash, even though some in the R world speak of it that way. It is better
to read the notation as implying that all levels of type are found under each
subject. It strikes me as an unwieldy way of specifying that the Axs interaction
term is the Error term to test the main effect of type. But the whole perspective
regarding 1-factor repeated measures designs in R is not conceptually aligned
with the randomized block idea - I would wager that most users and many
programmers are not aware of the analogy.

It is important to understand that use of the aov function this way has a re-
quirement that the “case” variable (snum here) is a factor. We already specified
that factor characteristic in the earlier chapter where the primary data set was
imported in chapter 2.
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In addition, leaving the contrast set for the “type” factor at the default indica-
tor/dummy coding is not a good idea for repeated measures designs. contr.sum
produces deviation/effect coding and either that or orthgonal contrast coding
should be employed for repeated measures analyses with the aov and other R
methods.

Finally, we need to use the summary function on the aov object, instead of
the anova function, in order to produce the traditional SS/df/MS/F/pvalue
ANOVA table.
# perform the 1-factor repeated measures anova
# the notation for specification of the error is not intrinsically
# obvious. some reading in R and S model specification is required.
# always best to use "sum to zero" contrasts for ANOVA
contrasts(rpt1.df$type) <- contr.sum
fit.1 <- aov(DV~type + Error(snum/type), data=rpt1.df)
summary(fit.1)

##
## Error: snum
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3740 415.5
##
## Error: snum:type
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 2042 510.4 8.845 4.42e-05 ***
## Residuals 36 2077 57.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Checking the df for the terms summarized is a doublecheck. We can verify the
parallel to the two main effects and the interaction term of the randomized
blocks perspective is correct. N was ten, so 9 df for the main effect of snum is
correct. Note that summary labels this term “Residuals”. The “type” IV had
five levels, so we expected the 4 df for that main effect. And the Axs interaction
term should, and does have 9x4=36 df; the interaction term is specified with
the “snum:type” notation standard for interactions in aov objects. Once again,
summary on this aov object labels this term “Residuals”, a duplicative use of
the label but we recognize its Axs identity by understanding the origina of the
36 df. The F and p values match our work with SPSS for this same data set.

One way to quickly obtain additional information is with use of the
model.tables function. I obtained the five condition means and the set
of deviation effects for each level of type (deviation effects as would be found
using effect coding)
#report the means of each level
print(model.tables(fit.1,"means"),digits=3)
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## Tables of means
## Grand mean
##
## 10.52
##
## type
## type
## clean homecage iguana whiptail krat
## 6.8 6.0 7.3 9.4 23.1
# report deviation effects for each level
print(model.tables(fit.1,"effects", n=TRUE),digits=3)

## Tables of effects
##
## type
## type
## clean homecage iguana whiptail krat
## -3.72 -4.52 -3.22 -1.12 12.58

We can evaluate the normality assumption for the residuals with a qqplot. Find-
ing those residuals requires looking at the structure of the fit.1 object and lo-
cating the residuals for the Axs interaction. It is in the third section of the
list of three components in the fit object (called snum:type here if the ‘str(fit.1)
function is executed). One major outlier is present and there is a hint of posi-
tive skew to the distribution but on balance, most of the data points seem to
indicate a reasonable fit to the normality assumption. Note that there are only
40 residuals here, but there are 50 data points. The discrepancy is that the
original five variables are transformed to contrast vectors and only four vectors
are needed for the five-level factor. Thus four new transformed variables and
n=10 yields 40 residuals.
#str(fit.1)
qqPlot(resid(fit.1[[3]]),id=FALSE)
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3.1.2 Method II, a multivariate linear model
Method II uses the multivariate linear model. It implements both the multivari-
ate test of the omnibus null hypothesis as well as the averaged F test approach
with GG and HF corrections. It also permits the user to obtain the Mauchly
Sphericity test and GG/HF corrections.

This approach requires the data frame to be “wide”, AND, only contain the
variables that are the levels of the repeated factor. No additional variables such
as a subject code can exist in the matrix of variables that is created from the
data frame.

This appproach is modeled after an article by Dalgaard:

http://www.r-project.org/doc/Rnews/Rnews_2007-2.pdf

This approach requires the “wide” version of the data file, and that file is avail-
able as the .csv file loaded here. The functions to be used require that the data
be in matrix form, not as a data frame. So, that conversion is also accomplished
here, following data import.
# read data file
rpt1w.df <- read.table("data/1facrpt_wide1.csv",header=T,sep=",")
# change the data from a data frame to a matrix,
# leaving out the snum variable.
# this method requires that the matrix contains
# only the data values
rpt1w.mat <- as.matrix(rpt1w.df)[,2:6]
# view the data
rpt1w.mat

## clean homecage iguana whiptail krat
## [1,] 24 15 41 30 50
## [2,] 6 6 0 6 13
## [3,] 4 0 5 4 9
## [4,] 11 9 10 14 18
## [5,] 0 0 0 0 0
## [6,] 8 15 10 15 38
## [7,] 8 5 2 6 15
## [8,] 0 0 0 11 54
## [9,] 0 3 1 1 11
## [10,] 7 7 4 7 23

The multivariate linear model is based on use of the standard lm function. The
model specification argument uses the “~1” syntax to indicate that all variable
in the matrix are to be included. Then the estVar function can be used to
visualize the variance-covariance matrix of the five variables.
# first fit the five variate model to get the var/cov matrix
mlmfit.1 <- lm(rpt1w.mat~1)
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estVar(mlmfit.1)

## clean homecage iguana whiptail krat
## clean 51.51111 32.88889 82.40000 55.97778 58.46667
## homecage 32.88889 32.22222 50.88889 39.44444 49.22222
## iguana 82.40000 50.88889 154.90000 99.42222 122.41111
## whiptail 55.97778 39.44444 99.42222 77.37778 124.51111
## krat 58.46667 49.22222 122.41111 124.51111 330.32222
# doublecheck with the `cov` function
#cov(rpt1w.mat)

Next, an intercept only model is fit by removing the variates from the full model
using the update function.
# now fit an intercept only model and use the
# anova function in the next section to compare models,
mlmfit.0 <- update(mlmfit.1, ~0)
#estVar(mlmfit.0)

A test based on multivariate normal theory evaluates an hypothesis that all
variates (repeated measures levels) have equal means is possible with this syntax.
A model comparison approach is used by passing the two models created above
to the anova function. The Pillai test statistic, approximate F value, df and p
value match what we produced in SPSS. This test does not have the sphericity
assumption. The multivariate test is evaluated as the degree of improvement
in fiit (or reduction in residuals) in the full model (mlmfit.1) relative to the
intercept-only model (mlmfit.0).
anova(mlmfit.1, mlmfit.0, X=~1)

## Analysis of Variance Table
##
## Model 1: rpt1w.mat ~ 1
## Model 2: rpt1w.mat ~ 1 - 1
##
## Contrasts orthogonal to
## ~1
##
## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 9 9.6149
## 2 10 1 11.2467 0.64954 2.7801 4 6 0.1269

The Mauchly test can be performed on the mlmfit.1 object. The W test statistic
and p value match our SPSS MANOVA results.
mauchly.test(mlmfit.1, X=~1)

##
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## Mauchly's test of sphericity
## Contrasts orthogonal to
## ~1
##
##
## data: SSD matrix from lm(formula = rpt1w.mat ~ 1)
## W = 0.0038542, p-value = 7.391e-06

The univariate averaged F test can also be produced by adding the “test” argu-
ment. This produces the same F value as we derived with the standard ANOVA
approach in SPSS MANOVA, the approach that assumes sphericity. Note that
the GG and HF epsilons are produced and that the adjustment produces the
same p values as we obtained in MANOVA.
anova(mlmfit.1, mlmfit.0, X=~1, test="Spherical")

## Analysis of Variance Table
##
## Model 1: rpt1w.mat ~ 1
## Model 2: rpt1w.mat ~ 1 - 1
##
## Contrasts orthogonal to
## ~1
##
## Greenhouse-Geisser epsilon: 0.3793
## Huynh-Feldt epsilon: 0.4401
##
## Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
## 1 9 9.6149
## 2 10 1 11.2467 8.8447 4 36 4.4236e-05 0.0055009 0.003391

While Method II gives the multivariate test and provides another way to obtain
the traditional univariate F test along with GG and HF corrections (as well
as the Mauchly test) it has a downside. The model specification formulae are
difficult arguments for the relative novice at R programming, especially the ~1
and ~0 types of structures. There is also not a simple way to extract tests
of contrasts with this approach, that I have found. Method III uses a similar
underlying logic, but is simpler to implement.

3.1.3 Method III, also a Multivariate Linear Model but
using Anova from car

Method III is similar to Method II, but uses an Anova approach in John Fox’s
car package that permits the Mauchly test and the GG and HF corrections
as well as permitting Type III sums of squares (which lm and anova does not.
However, Type III SS is not relevant here - since there are no missing data
points, the data set is balanced. But this approach can be useful for advanced
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designs that contain both repeated measures factors and between-groups factors
as well as unequal N.
# use the same "wide" data frame as from Method II
# change the data from a data frame to a matrix
# and leave out the snum variable
# this method requires that the matrix only contains the data values
rpt1w.mat <- as.matrix(rpt1w.df[,-1])
# view the data
rpt1w.mat

## clean homecage iguana whiptail krat
## [1,] 24 15 41 30 50
## [2,] 6 6 0 6 13
## [3,] 4 0 5 4 9
## [4,] 11 9 10 14 18
## [5,] 0 0 0 0 0
## [6,] 8 15 10 15 38
## [7,] 8 5 2 6 15
## [8,] 0 0 0 11 54
## [9,] 0 3 1 1 11
## [10,] 7 7 4 7 23
# start by defining the multivariate linear model
# this code returns the level means.
mlmfit.2 <- lm(rpt1w.mat ~1)
mlmfit.2

##
## Call:
## lm(formula = rpt1w.mat ~ 1)
##
## Coefficients:
## clean homecage iguana whiptail krat
## (Intercept) 6.8 6.0 7.3 9.4 23.1

The completion of the analysis requires the creation of the repeated measures
factor. The data set, in the wide format, is simply a collection of five variables.
The “type” variable used in Method I does not exist. So we need to create an
object that is that five-level factor. The factor is also “ordered” to keep the
levels in the same order as was done above for graphing purposes, but also to
have the upcoming contrast analysis match what we did in SPSS MANOVA.
The creation of this “stimulus” factor (really the same thing as “type” in the
long format data set) is analogous to using the “wsfactors” subcommand in
SPSS MANOVA and GLM. My choice of the word “stimulus” is shorthand for
“stimulus type” and this reinforces the identity to the “type” variable as used
in Method I.
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# now define a variable that gives the design of the study,
# the levels of the repeated factor, and order them the
# same way that we did in the original SPSS analyses
stimulus <- factor(c("clean", "homecage", "iguana" ,

"whiptail", "krat"))
stimulus <- ordered(stimulus,

levels=c("clean","homecage","iguana",
"whiptail", "krat"))

stimulus

## [1] clean homecage iguana whiptail krat
## Levels: clean < homecage < iguana < whiptail < krat

The implementation of the analysis with this approach focuses on use of the
Anova function from the car package. Two crucial arguments are required to
specify the repeated measures nature of the analysis of the design. These are
the “idata” and “idesign” arguments. Anova uses the multivariate object defined
above and then applies the idesign specification. Applying summary to that
Anova object produces the multivariate and univariate tests of the omnibus
hypothesis. It also provides the Mauchly test of sphericity, the GG and HF
epsilons, and corrected univariate test p-values, all matching the Method II and
SPSS results. The terms “idesign”, “idata”, and “icontrasts” derive from the
phrase “Intra-subject” which implies repeated measures.

When using the idesign argument, Anova transforms the levels of the repeated
measures factors into orthogonal contrasts. Look carefully at the product of
the summary function here and see if you can guess what this default set of
contrasts is. Hint: it is the default because the most common type of repeated
measure factor is a collection of measurements at various time points, and is
thus a quantitative IV.

There may be something that I am missing about using this method, but I can’t
sort out a direct way of testing the contrasts. This is in spite of the fact that
their SS are reported. We will return to this with a manual method in a later
section of the next chapter.
#require(car)
mlmfit2.anova <- Anova(mlmfit.2,

idata=data.frame(stimulus),
idesign=~stimulus, type="III")

# with the summary function, when multivariate=TRUE,
# and univariate=TRUE,
# both multivariate and averaged F tests of the
# repeated effect are printed.
summary(mlmfit2.anova, multivariate=T, univariate=T)

##
## Type III Repeated Measures MANOVA Tests:
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##
## ------------------------------------------
##
## Term: (Intercept)
##
## Response transformation matrix:
## (Intercept)
## clean 1
## homecage 1
## iguana 1
## whiptail 1
## krat 1
##
## Sum of squares and products for the hypothesis:
## (Intercept)
## (Intercept) 27667.6
##
## Multivariate Tests: (Intercept)
## Df test stat approx F num Df den Df Pr(>F)
## Pillai 1 0.5967217 13.3171 1 9 0.0053237 **
## Wilks 1 0.4032783 13.3171 1 9 0.0053237 **
## Hotelling-Lawley 1 1.4796774 13.3171 1 9 0.0053237 **
## Roy 1 1.4796774 13.3171 1 9 0.0053237 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------
##
## Term: stimulus
##
## Response transformation matrix:
## stimulus.L stimulus.Q stimulus.C stimulus^4
## clean -0.6324555 0.5345225 -3.162278e-01 0.1195229
## homecage -0.3162278 -0.2672612 6.324555e-01 -0.4780914
## iguana 0.0000000 -0.5345225 -4.095972e-16 0.7171372
## whiptail 0.3162278 -0.2672612 -6.324555e-01 -0.4780914
## krat 0.6324555 0.5345225 3.162278e-01 0.1195229
##
## Sum of squares and products for the hypothesis:
## stimulus.L stimulus.Q stimulus.C stimulus^4
## stimulus.L 1296.0000 906.6815 342.00000 164.64132
## stimulus.Q 906.6815 634.3143 239.26317 115.18306
## stimulus.C 342.0000 239.2632 90.25000 43.44702
## stimulus^4 164.6413 115.1831 43.44702 20.91571
##
## Multivariate Tests: stimulus
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## Df test stat approx F num Df den Df Pr(>F)
## Pillai 1 0.6495405 2.780095 4 6 0.12692
## Wilks 1 0.3504595 2.780095 4 6 0.12692
## Hotelling-Lawley 1 1.8533965 2.780095 4 6 0.12692
## Roy 1 1.8533965 2.780095 4 6 0.12692
##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## stimulus 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## stimulus 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## stimulus 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## stimulus 0.4400688 0.003391046

The multivariate tests match what was seen in Method II above, as does the
Univariate F test which also matches the F test seen with Method I. The “Sum
of squares and products for the hypothesis” matrix provides a starting point for
evaluating contrasts and this will be developed in the next chapter.

3.1.4 Method IV: Implement the univariate analysis with
ezanova from the ez package

The ezanova function is a wrapper for the aov function and may be simpler to
use than the aov function for some designs. It has the added value of performing
the Mauchly sphericity test and providing GG and HF epsilons and corrected p
values as well as an effect size indicator. The structure of the code requires an
argument for the data frame (needs the long format data frame), the dependent
variable, the ID factor for the case variable (subject, or snum in our data set),
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and the repeated measures factor (the within argument).

This might be the simplest of all approaches to obtain the omnibus F test
plus the sphericity test and associated corrections. The main arguments that
create the repeated measures analysis are “dv” which is the dependent variable
name, “wid” which is the subject variable ID code (and the period is a odd but
necessary part of the code) and “within” which is the repeated measure IV.
#library(ez)
fit1.ez <- ezANOVA(data=rpt1.df, detailed=T, return_aov=T,

dv=DV,
wid=.(snum),
within=.(type))

fit1.ez

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 (Intercept) 1 9 5533.52 3739.68 13.317097 5.323652e-03 * 0.4875125
## 2 type 4 36 2041.48 2077.32 8.844723 4.423582e-05 * 0.2597805
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 type 0.003854226 7.390741e-06 *
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 type 0.3792955 0.005500897 * 0.4400688 0.003391046 *
##
## $aov
##
## Call:
## aov(formula = formula(aov_formula), data = data)
##
## Grand Mean: 10.52
##
## Stratum 1: snum
##
## Terms:
## Residuals
## Sum of Squares 3739.68
## Deg. of Freedom 9
##
## Residual standard error: 20.38431
##
## Stratum 2: snum:type
##
## Terms:
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## type Residuals
## Sum of Squares 2041.48 2077.32
## Deg. of Freedom 4 36
##
## Residual standard error: 7.596271
## Estimated effects may be unbalanced

3.1.5 Method V: Implement the univariate analysis with
the afex package

The afex package permits specification of repeated measures models using styles
from ez, aov, lm, car::Anova and other modeling functions. Here, the code
reflects the basic aov syntax for the model specification and uses Anova from
car for calculations.

This initial approach requests the base univariate/averaged F approach, first
setting the contrasts to the “sum to zero” contrast set that should be done for
ANOVA designs, especially repeated measures - orthogonal contrasts are also
“sum to zero” contrasts and will be examined in a later chapter. Here, the
contr.sum specification sets the contrasts to “effect” coding.
contrasts(rpt1.df$type) <- contr.sum
fit1.afex <- aov_car(DV~type + Error(snum/type), data=rpt1.df)
summary(fit1.afex)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## type 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## type 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## type 0.3793 0.005501 **
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## type 0.4400688 0.003391046

The inital approach does not produce an effect size estimate. One way to obtain
the “generalized effect size” statistic is to simply ask to see the afex fit object,
but as a stand alone method this may not be desireable since it only reports the
GG corrected p value.
fit1.afex

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F ges p.value
## 1 type 1.52, 13.65 152.13 8.84 ** .260 .006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: GG

A more full way of taking control is to use the “anova_table” argument in the
original aov_car specification. The correction argument in the “anova_table”
list permits “none”, “GG” or “HF” for sphericity corrections. Simply asking
for a printout of the fit2.afex object also yields the corrected p value (or un-
corrected as is requested here) and an effect size statistic. The options for the
“es” specification are “pes” for partial eta squared, and “ges” for the generalized
effect size. See the help pages for the afex functions for references regarding
the generalized effect size statistic if that has not yet been covered in class.
# make sure "sum to zero" contrasts are specified - done above
fit2.afex <- aov_car(DV~type + Error(snum/type), data=rpt1.df,

anova_table = list(correction = "none", es="pes"))
fit2.afex

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F pes p.value
## 1 type 4, 36 57.70 8.84 *** .496 <.001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

An example of using one of the correction methods and a choice of the “ges”
effect size is next:
# make sure "sum to zero" contrasts are specified - done above
fit3.afex <- aov_car(DV~type + Error(snum/type), data=rpt1.df,
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anova_table = list(correction = "HF", es="ges"))
fit3.afex

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F ges p.value
## 1 type 1.76, 15.84 131.12 8.84 ** .260 .003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: HF

Neither of these previous two code chunks provide the sphericity test. That
can be done by applying the summary function to the aov_car objects. For
example…..:
summary(fit3.afex)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## type 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## type 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## type 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## type 0.4400688 0.003391046

Finally, we can examine use of the other afex functions that provide the same
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general approach, but uses the style of model specification from the ‘ez’ package.
First, the “ez” style:
# make sure "sum to zero" contrasts are specified - done above
fit4.afex <- aov_ez(data=rpt1.df, detailed=T, return_aov=T,

dv="DV",
id="snum",
within="type",
anova_table = list(correction = "HF", es="ges"))

fit4.afex

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F ges p.value
## 1 type 1.76, 15.84 131.12 8.84 ** .260 .003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: HF
summary(fit4.afex)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## type 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## type 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## type 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## HF eps Pr(>F[HF])
## type 0.4400688 0.003391046

And next, the “lme” style:
# make sure "sum to zero" contrasts are specified - done above
fit5.afex <- aov_4(DV ~ type + (type|snum), data=rpt1.df,

anova_table = list(correction = "none", es="ges"))
fit5.afex

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F ges p.value
## 1 type 4, 36 57.70 8.84 *** .260 <.001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
summary(fit5.afex)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## type 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## type 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## type 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## type 0.4400688 0.003391046

This implementation with afex is probably the simplest way to accomplish the
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primary requirements of finding the omnibus F test, evaluating the sphericity
assumption, correcting the p value for any sphericity violations, and providing
an effect size estimate. The approach taken for fit2.afex, along with use of
the summary function on that object strikes me as the most efficient way of
doing the traditional omnibus ANOVA. Objects from these afex functions also
provide a direct way to interface with the emmeans approach to contrasts and
post hoc testing found in a later chapter.

3.2 Commentary on the Univariate/Multivariate
methods

The user has two kinds of decisions to make. The first is whether the multivariate
GLM approach is desired, or the univariate one (the averaged F test). Method
II and Method III produce both types of test and the choice depends, in part on
examination of the sphericity assumption. The real question is whether to use
the multivariate test or the GG/HF corrected univariate approach. Typically
researchers have not frequently used the multivariate approach because of its
relative low power for the typical small sample sizes of many repeated measures
experiments. A literature on the relative merits of the two approaches can be
found in your textbooks and the Dudek stat toolkit bibliography.

Of all the methods, the simplest to implement might be method V, using afex.
This provides the sphericity test and GG/HF corrections to the univariate p
value for the omnibus test. If the user does not prefer the corrected univari-
ate test in the face of non-sphericity, then Method I, II or Method III can be
employed once the sphericity assumption is examined (from Method II or III).
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Chapter 4

Analytical Contrasts

Once first decision is made regarding univariate (the so-called averaged F test) vs
multivariate tests, the user must still decide how to proceed in following up these
omnibus tests with pairwise comparisons or analytical/orthogonal contrasts. It
can be argued that the omnibus F tests in ANOVA are largely superfluous to the
goals of researchers. Studies are designed with specific a priori hypotheses that
should/could be specified as contrasts, including potential multi-group compar-
isons. This approach is viewed as more elegant and flexible that a shotgun
approach of doing all pairwise comparisons among levels. Although assessment
of pairwise comparisons among levels of a repeated measures factor are covered
in this document, the analytical (and perhaps orthogonal) contrasts approach
is considered the method of choice.

Until recently, and unfortunately, most of the built-in methods I have found
employ the omnibus Axs error term in creating standard errors or F tests for
such comparisons. This error term will almost always be flawed because of the
likely lack of sphericity that is common in repeated measures studies. This is
what we saw above in the attempt to use the “split” argument in the summary
of the aov fit in the first part of this chapter.

The theory that outlines the rationale for specific error terms is summarized
in the following figure which envisions partitioning the omnibus effect into con-
trasts and the Axs interaction into interaction contrasts which are the specific
error terms for their respective contrast:
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These specific error terms are not flawed in the presence of non-sphericity.
They can also be viewed as “tailored” to the contrast in question and may
be generally preferred. In the rare circumstance where sphericity can be
confidently assumed, then use of the omnibus error term would provide more
power (larger df). Otherwise, specific error terms should be seen as the
preferred approach.

We will see how use of the emmeans enables hypothesis tests with specific error
terms, but only for some ANOVA fit objects. This is outlined in the section on
afex and emmeans usage toward the end of this chapter.

It is possible to obtain specific error terms are with the manual approaches
outlined below or perhaps in following up linear mixed effects modeling (next
chapter). The manual approaches are not terribly burdensome for a simple one
factor repeated measures design, but will become very much more challenging
for larger designs - e.g., two repeated factors or mixed designs with grouping
factors and repeated measures factors.

The conclusion I still hold is that the SPSS MANOVA procedure is efficient
and helpful in pursuing these followup contrast types of questions. The SPSS
GLM procedure can also be used, but its syntax (with L matrix specification) is
obnoxiously obtuse. The default setting of specific error terms is of considerable
value in the MANOVA procedure. It is not clear to me why this has not found its
way into the R ecosystem more prominently. It is perhaps because the standard
data format for repeated measures is the long format data structure. Specific

49



error terms are more easily generated out of wide format data structures, for
repeated measures. Perhaps there is still something I haven’t yet learned about
the suite of R functions available. Or see the use of the glht function usage in
the last sections in the next chapter here.

4.1 Partitioning the omnibus effect into orthog-
onal contrasts

The value of full rank models that employ orthogonal contrast sets is clear for
completely randomized designs (between-groups designs). For repeated mea-
sures factors partitioning into orthogonal sets is useful for establishing the Om-
nibus F test of the factor as well. Non-orthogonal contrasts with alpha rate
adjustments can also be useful and attention that that approach is possible
with the emmeans function later in this chapter and the glht function in the
next chapter.

4.2 Contrasts with the aov model object
Rather than use the default indicator coding or the “contr.sum” coding that
was used initially, we can change the contrasts for the repeated measure factor
using the same approach considered for between subjects factors in completely
randomized designs. The set chosen here would likely contain several a priori
hypotheses about this design and all four contrasts are rational.
contrasts.type <- matrix(c(4, -1, -1, -1, -1,

0, 3, -1, -1, -1,
0, 0, -1, -1, 2,
0, 0, -1, 1, 0),
ncol=4)

contrasts(rpt1.df$type) <- contrasts.type
contrasts(rpt1.df$type)

## [,1] [,2] [,3] [,4]
## clean 4 0 0 0
## homecage -1 3 0 0
## iguana -1 -1 -1 -1
## whiptail -1 -1 -1 1
## krat -1 -1 2 0

Once this set is in place, we can use familiar methods for finding tests of these
contrasts. The same aov model fit that comprised Method I above is imple-
mented again here. In a second application of the summary function to the aov
model object, we can use the “split” argument to obtain evaluation of these four
orthogonal contrasts.

From examination of the four F values and their component numerator and
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denominator MS, we can see that these four tests all use the OMNIBUS error
term and are not GG/HF adjusted. Specific error terms are, unfortunately, not
possible using the aov function for the model fit. The summary.lm function also
will not work with a repeated measures object fit from aov. Other methods for
obtaining evaluation of contrasts are found below.
fit.1 <- aov(DV~type + Error(snum/type), data=rpt1.df)
summary(fit.1)

##
## Error: snum
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3740 415.5
##
## Error: snum:type
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 2042 510.4 8.845 4.42e-05 ***
## Residuals 36 2077 57.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit.1, split=list(type=list(ac1=1, ac2=2, ac3=3, ac4=4)))

##
## Error: snum
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3740 415.5
##
## Error: snum:type
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 2041.5 510.4 8.845 4.42e-05 ***
## type: ac1 1 173.0 173.0 2.998 0.0919 .
## type: ac2 1 396.0 396.0 6.863 0.0128 *
## type: ac3 1 1450.4 1450.4 25.136 1.44e-05 ***
## type: ac4 1 22.1 22.1 0.382 0.5404
## Residuals 36 2077.3 57.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.3 Contrasts with the Method III “mlmfit” ob-
ject

We saw in the earlier chapter that contrast SS could be obtained from the “mlm-
fit” approach. Since orthogonal polynomial trend analysis, as done in the initial
Method III analysis, is not appropriate for our “stimulus/type” factor, next we
can add in the ability to specify our own contrasts. This is the same orthogonal
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set used just above. The name of the factor was changed to “stimulus” for this
approach so as to not confuse it with the aov approach where we used the vari-
able name “type” in the long format data frame. Then we will rerun the Anova
function from car, using these contrasts.
contrasts.stimulus <- matrix(c(4, -1, -1, -1, -1,

0, 3, -1, -1, -1,
0, 0, -1, -1, 2,
0, 0, -1, 1, 0),

ncol=4)
contrasts(stimulus) <- contrasts.stimulus
contrasts(stimulus)

## [,1] [,2] [,3] [,4]
## clean 4 0 0 0
## homecage -1 3 0 0
## iguana -1 -1 -1 -1
## whiptail -1 -1 -1 1
## krat -1 -1 2 0
icontr <- contrasts(stimulus)

First we will refit the same “mlmfit” model as from Method III in the earlier
chapter.
# start by defining the multivariate linear model
# this code returns the level means.
mlmfit.2 <- lm(rpt1w.mat ~1)
mlmfit.2

##
## Call:
## lm(formula = rpt1w.mat ~ 1)
##
## Coefficients:
## clean homecage iguana whiptail krat
## (Intercept) 6.8 6.0 7.3 9.4 23.1

Next we redo the application of the Anova function to that model fit with an
additional specification. The new “icontr” object is specified with one additional
argument in Anova, called “icontrasts”.

Also notice:

1. Hypothesis SS and for each contrast are produced, but only found in the
SSP matrix and t/F tests not performed. We will have to compute the
F’s manually after computing the respective MS.

2. The error SS are computed for the contrasts but not printed by use of the
summary function. We will have to manually extract them.
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3. The hypothesis SS and error SS are not corrected for the size of the co-
efficients chosen. I.e., the coefficients are not orthonormalized in this
illustration, so the SS won’t match your SPSS-generated SS unless you
divide each by the respective sum of the squared contrast coefficients.

4. Despite using the contrasts that we specified, Anova does not produce tests
of those individual contrasts with the summary function. I have not found
a direct way to obtain those tests. In the next sections, I show ways to
obtain them more “manually”

mlmfit3.anova <- Anova(mlmfit.2,
idata=data.frame(stimulus),
idesign=~stimulus,
icontrasts=icontr,type="III")

#str(mlmfit3.anova)
summary(mlmfit3.anova)

##
## Type III Repeated Measures MANOVA Tests:
##
## ------------------------------------------
##
## Term: (Intercept)
##
## Response transformation matrix:
## (Intercept)
## clean 1
## homecage 1
## iguana 1
## whiptail 1
## krat 1
##
## Sum of squares and products for the hypothesis:
## (Intercept)
## (Intercept) 27667.6
##
## Multivariate Tests: (Intercept)
## Df test stat approx F num Df den Df Pr(>F)
## Pillai 1 0.5967217 13.3171 1 9 0.0053237 **
## Wilks 1 0.4032783 13.3171 1 9 0.0053237 **
## Hotelling-Lawley 1 1.4796774 13.3171 1 9 0.0053237 **
## Roy 1 1.4796774 13.3171 1 9 0.0053237 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------
##
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## Term: stimulus
##
## Response transformation matrix:
## stimulus1 stimulus2 stimulus3 stimulus4
## clean 4 0 0 0
## homecage -1 3 0 0
## iguana -1 -1 -1 -1
## whiptail -1 -1 -1 1
## krat -1 -1 2 0
##
## Sum of squares and products for the hypothesis:
## stimulus1 stimulus2 stimulus3 stimulus4
## stimulus1 3459.6 4054.8 -5487.0 -390.6
## stimulus2 4054.8 4752.4 -6431.0 -457.8
## stimulus3 -5487.0 -6431.0 8702.5 619.5
## stimulus4 -390.6 -457.8 619.5 44.1
##
## Multivariate Tests: stimulus
## Df test stat approx F num Df den Df Pr(>F)
## Pillai 1 0.6495405 2.780095 4 6 0.12692
## Wilks 1 0.3504595 2.780095 4 6 0.12692
## Hotelling-Lawley 1 1.8533965 2.780095 4 6 0.12692
## Roy 1 1.8533965 2.780095 4 6 0.12692
##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## stimulus 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## stimulus 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## stimulus 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## HF eps Pr(>F[HF])
## stimulus 0.4400688 0.003391046

The omnibus univariate and multivariate tests are identical the the initial
Method III illustration above. Unfortunately, there does not appear to be a
way of requesting that Anova test these newly created contrasts.

The output just above did give the SS for each of the contrasts, seen on the
leading diagonal of the SSP (hypothesis matrix). The Anova function did create
the error SS as well, but they were not printed with the results. In order to find
the error SS for each contrast (the Acontrast x s) terms for specific error terms,
we need to examine the structure of the mlmfit3.anova object. It is called the
SSPE matrix. Note that in addition to the SShypothesis and SSerror values, we
can look for the error df as well (it is called error.df)
str(mlmfit3.anova)

## List of 14
## $ SSP :List of 2
## ..$ (Intercept): num [1, 1] 27668
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr "(Intercept)"
## .. .. ..$ : chr "(Intercept)"
## ..$ stimulus : num [1:4, 1:4] 3460 4055 -5487 -391 4055 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:4] "stimulus1" "stimulus2" "stimulus3" "stimulus4"
## .. .. ..$ : chr [1:4] "stimulus1" "stimulus2" "stimulus3" "stimulus4"
## $ SSPE :List of 2
## ..$ (Intercept): num [1, 1] 18698
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr "(Intercept)"
## .. .. ..$ : chr "(Intercept)"
## ..$ stimulus : num [1:4, 1:4] 4976 4381 -5133 -169 4381 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:4] "stimulus1" "stimulus2" "stimulus3" "stimulus4"
## .. .. ..$ : chr [1:4] "stimulus1" "stimulus2" "stimulus3" "stimulus4"
## $ P :List of 2
## ..$ (Intercept): num [1:5, 1] 1 1 1 1 1
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:5] "clean" "homecage" "iguana" "whiptail" ...
## .. .. ..$ : chr "(Intercept)"
## ..$ stimulus : num [1:5, 1:4] 4 -1 -1 -1 -1 0 3 -1 -1 -1 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:5] "clean" "homecage" "iguana" "whiptail" ...
## .. .. ..$ : chr [1:4] "stimulus1" "stimulus2" "stimulus3" "stimulus4"
## $ df : Named num [1:2] 1 1
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## ..- attr(*, "names")= chr [1:2] "(Intercept)" "stimulus"
## $ error.df : int 9
## $ terms : chr [1:2] "(Intercept)" "stimulus"
## $ repeated : logi TRUE
## $ type : chr "III"
## $ test : chr "Pillai"
## $ idata :'data.frame': 5 obs. of 1 variable:
## ..$ stimulus: Ord.factor w/ 5 levels "clean"<"homecage"<..: 1 2 3 4 5
## .. ..- attr(*, "contrasts")= num [1:5, 1:4] 4 -1 -1 -1 -1 0 3 -1 -1 -1 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:5] "clean" "homecage" "iguana" "whiptail" ...
## .. .. .. ..$ : NULL
## $ idesign :Class 'formula' language ~stimulus
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## $ icontrasts: num [1:5, 1:4] 4 -1 -1 -1 -1 0 3 -1 -1 -1 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:5] "clean" "homecage" "iguana" "whiptail" ...
## .. ..$ : NULL
## $ imatrix : NULL
## $ singular : Named logi [1:2] FALSE FALSE
## ..- attr(*, "names")= chr [1:2] "(Intercept)" "stimulus"
## - attr(*, "class")= chr "Anova.mlm"

This SSP matrix duplicates the information that was seen in the summary output
and the SS for the contrasts are on the leading diagonal. They are numerically
larger than those from the summary output above, but by the expected factor
of the sum of the squared coefficients for each contrast - they are not orthonor-
malized.
# view the contrast hypothesis SS_CP matrix
mlmfit3.anova$SSP$stimulus

## stimulus1 stimulus2 stimulus3 stimulus4
## stimulus1 3459.6 4054.8 -5487.0 -390.6
## stimulus2 4054.8 4752.4 -6431.0 -457.8
## stimulus3 -5487.0 -6431.0 8702.5 619.5
## stimulus4 -390.6 -457.8 619.5 44.1

Similarly, the SS for the specific errors are found on the leading diagonal of this
SSPE matrix - again, not orthonormalized contrasts.
# view the contrast error SS_CP matrix
mlmfit3.anova$SSPE$stimulus

## stimulus1 stimulus2 stimulus3 stimulus4
## stimulus1 4976.4 4381.2 -5133.0 -169.4
## stimulus2 4381.2 6371.6 -4069.0 369.8
## stimulus3 -5133.0 -4069.0 6882.5 735.5
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## stimulus4 -169.4 369.8 735.5 300.9

In order to do the F tests, we need to:

1. Extract the relevant SS from the leading diagonals of the matrices exam-
ined above.

2. Create the MS error for each contrast by dividing by the correct df for the
Axs term (1x(s-1))

3. Realize that each contrast is a 1df source, so each hypothesis SS is already
a MS

4. Divide the MSeffect values by the MSerror values to produce the F values
5. find p values for each F

It made the naming easier to “attach” the mlmfit3.anova object. First, obtain
the SSeffect values (equivalent to the MSeffect values since they are 1 df terms:
attach(mlmfit3.anova)
#show effect/cov values - the SS of the contrasts are on the diagonal
#SSP$stimulus
effect <- diag(SSP$stimulus)
#note that the diagonal from SSP matrix is already the MS since df = 1
effect

## stimulus1 stimulus2 stimulus3 stimulus4
## 3459.6 4752.4 8702.5 44.1

Then obtain the MSerror values:
#show error/cov values - the specific error SS are on the diagonal
#SSPE$stimulus
x1 <- diag(SSPE$stimulus)
x1

## stimulus1 stimulus2 stimulus3 stimulus4
## 4976.4 6371.6 6882.5 300.9
error <- x1/error.df

Now compute the F values and obtain p values for each contrast. Note that
they match our SPSS work.
# now compute F's; F values are on the diagonal
Fvalues <- effect/error
Fvalues

## stimulus1 stimulus2 stimulus3 stimulus4
## 6.256812 6.712851 11.379949 1.319043
# obtain the p values for the four F tests (all have 1,9 df)
pf(Fvalues,1,9,lower.tail=F)

## stimulus1 stimulus2 stimulus3 stimulus4
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## 0.033786236 0.029169567 0.008212304 0.280372227

Once again, note that the MS values for the numerator and denominator are
neither one corrected for the size of the coefficients chosen. But since neither
are corrected, their ratio still produces the expected F value. We could have
done more work to divide each SS first by the sum of the squared coefficients
for each contrast, but the same F values would have been produced.

There is a more efficient way of doing this by writing a function and then passing
the Anova object to it. F values and p values are returned.
model <- mlmfit3.anova
rptcontr <- function(model){
SSCPeffect <- as.matrix(model$SSP$stimulus,ncol=4)
effect <- diag(SSCPeffect)
#effect
#return(effect)
SSCPerror <- as.matrix(model$SSPE$stimulus,ncol=4)
error <- diag(SSCPerror)
dferror <- mlmfit3.anova$error.df
mserror <- error/dferror
Fval <- round(effect/mserror,3)
pval <- round(pf(Fval, 1,dferror, lower.tail=F),4)
vals <- as.data.frame(cbind(Fval, pval, dferror))
vals
return(gt(vals,rownames_to_stub=T))

}
rptcontr(model=mlmfit3.anova)

Fval pval dferror
stimulus1 6.257 0.0338 9
stimulus2 6.713 0.0292 9
stimulus3 11.380 0.0082 9
stimulus4 1.319 0.2804 9

4.4 Recall how to “manually” implement con-
trasts for repeated factors.

The method for obtaining contrasts just reviewed is very laborious and does
not easily extend to multiple factor repeated measures designs. At this point, it
would be useful to recall another class demonstration of how to conceptualize
contrasts for repeated measures.

Since each case provides a data point for each level of the repeated measure
factor, we can create contrast vectors manually as new variables - essentially
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transformations. I have used the mutate function from dplyr to do this. For a
review of mutate, see the separate document on subsetting and variable creation.
rpt1w.df <- mutate(rpt1w.df,

ac1=(4*clean+(-1)*homecage+(-1)*iguana+(-1)*whiptail+(-1)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac2=(0*clean+(3)*homecage+(-1)*iguana+(-1)*whiptail+(-1)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac3=(0*clean+(0)*homecage+(-1)*iguana+(-1)*whiptail+(2)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac4=(0*clean +(0)*homecage+(-1)*iguana+(1)*whiptail+(0)*krat))
gt(rpt1w.df)

snum clean homecage iguana whiptail krat ac1 ac2 ac3 ac4
1 24 15 41 30 50 -40 -76 29 -11
2 6 6 0 6 13 -1 -1 20 6
3 4 0 5 4 9 -2 -18 9 -1
4 11 9 10 14 18 -7 -15 12 4
5 0 0 0 0 0 0 0 0 0
6 8 15 10 15 38 -46 -18 51 5
7 8 5 2 6 15 4 -8 22 4
8 0 0 0 11 54 -65 -65 97 11
9 0 3 1 1 11 -16 -4 20 0

10 7 7 4 7 23 -13 -13 35 3

Once created, we can test a hypothesis that each contrast has a value of zero
(the null). Each contrast is now a single vector of ten values, and the sd of each
vector is the square root of the specific error term MS values calculated above.
So, when we perform a one sample t-test with a null value of zero, the t’s that
are produced are the square roots of the F values computed above. One might
compare the mean of the first contrast vector to the value we examined when
we manually did this exercise in spreadsheet form at the point in time that the
repeated measures theory was first presented in class.

Also note that these F’s (and the squares of the t’s below) do not match the
F tests of these same contrasts that were obtained in the first section of this
chapter where the “split” argument was used in the summary function. This
is because the “split” approach uses the omnibus error term (MS Axs) for all
of the contrasts, but the approaches here utilize error that is specific to each
contrast. The latter would always be preferred when sphericity is not present
in the data system (almost always).
t.test(rpt1w.df$ac1)

##
## One Sample t-test
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##
## data: rpt1w.df$ac1
## t = -2.5014, df = 9, p-value = 0.03379
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -35.421285 -1.778715
## sample estimates:
## mean of x
## -18.6
t.test(rpt1w.df$ac2)

##
## One Sample t-test
##
## data: rpt1w.df$ac2
## t = -2.5909, df = 9, p-value = 0.02917
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -40.833812 -2.766188
## sample estimates:
## mean of x
## -21.8
t.test(rpt1w.df$ac3)

##
## One Sample t-test
##
## data: rpt1w.df$ac3
## t = 3.3734, df = 9, p-value = 0.008212
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 9.717798 49.282202
## sample estimates:
## mean of x
## 29.5
t.test(rpt1w.df$ac4)

##
## One Sample t-test
##
## data: rpt1w.df$ac4
## t = 1.1485, df = 9, p-value = 0.2804
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -2.036306 6.236306
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## sample estimates:
## mean of x
## 2.1

This manual approach works well, is fairly efficient, and is important because
of its use of the error terms specific to the contrast rather than the omnibus
Axs error term which is burdened with the sphericity assumption. There is
a literature that argues for the use of specific error terms to avoid this non-
sphericity problem. Using the omnibus Axs error term may inflate type I error
rates more for contrasts than for the omnibus F test in repeated measures designs
when the sphericity assumption is violated (see section in the tookit bibliography,
in particular a paper by Boik (Boik, 1981).

Also see chapter nine for a more efficient way of producing these specific error
term approaches.

4.4.1 Create a plot of these contrasts and their specific
errors

Modeling on the approach shown in chapter 2 for visualizing the pairwise com-
parisons, we plot the four orthogonal contrast means and standard errors for the
contrasts just examined above with the one-sample t-test procedure. First we
need to extract the variables from the wide format data frame and restructure
the data to a long format. Then the summarySE function can be used to find
the means, SE’s and CI’s.
aclong <-
tidyr::pivot_longer(data=rpt1w.df[, c(1,7:10)],

cols=2:5,
names_to="contrast",
values_to="contrastvalue")

aclong

## # A tibble: 40 x 3
## snum contrast contrastvalue
## <int> <chr> <dbl>
## 1 1 ac1 -40
## 2 1 ac2 -76
## 3 1 ac3 29
## 4 1 ac4 -11
## 5 2 ac1 -1
## 6 2 ac2 -1
## 7 2 ac3 20
## 8 2 ac4 6
## 9 3 ac1 -2
## 10 3 ac2 -18
## # ... with 30 more rows
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summary.contrasts <- Rmisc::summarySE(aclong,
measurevar="contrastvalue",
groupvars="contrast")

summary.contrasts

## contrast N contrastvalue sd se ci
## 1 ac1 10 -18.6 23.514535 7.435949 16.821285
## 2 ac2 10 -21.8 26.607434 8.414009 19.033812
## 3 ac3 10 29.5 27.653611 8.744840 19.782202
## 4 ac4 10 2.1 5.782156 1.828478 4.136306

Much like the plot of paired differences in chapter 2, the visual task here is to
compare each mean value to zero. Confidence intervals are overlaid and we see
all but the last contrast have CI’s that do not overlap zero, and that is what
is expected since the first three were significant when tested above with the
one-sample t-tests. The important point here is that the standard error used in
calculating the CI is an error specific to the particular contrast.

Also note that contrast 4 is a pairwise comparison of the same pair of levels
examined in chapter 2 as pair 4 and 3 (comparing whiptail lizard to iguana).
The mean value, the CI, and the plot are the same here as for that pair seen in
chapter 2.

This graph, plus the graph from chapter 2 of means plus raw data points would
be a valueable way to present data for this design.
p10 <- ggplot(summary.contrasts, aes(x=contrast, y=contrastvalue, fill=contrast)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=contrastvalue-ci, ymax=contrastvalue+ci), data=summary.contrasts,

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus 95% CIs for Four Orthogonal Contrasts") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p10
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4.5 Working with afex and emmeans for con-
trasts and pairwise comparison follow ups

The emmeans package provides strong facilities for performing follow up analy-
ses such as pairwise multiple comparisons and contrasts, in conjunction with an
afex model. This section briefly demonstrates both of those. In a recent release
of emmeans, the tests of contrasts and pairwise comparisons in this repeated
measures design began to employ specific error terms instead of the flawed om-
nibus error term previously used. This may have resulted from a change in the
aov_car function in afex to use a “multivariate/wide data” approach. For this
1 factor repeated measures design, emmeans can now be recommended, but only
in conjunction wth an afex fit object. emmeans will not produce specific error
terms when applied to aov models.

The emmeans function can utilize anova objects from a variety of sources. It
works well with objects from afex so that is the approach taken here. The
first line of code here simply extracts the information from the afex object to
perform pairwise tests of the means of the five conditions. Since this would
likely be a post hoc approach, the “adjust” argument in the “pairs” function
permits access to the large family of correction types for error rate inflation. I
illustrated the use with the Tukey method, but holm, by, bonf, fdr, and others
are available. The df for the error in each of these tests is listed as 9 and the
SE vary from test to test. This implies that the specific errors are used for all
of the pairwise tests and that error is based on the potentially flawed MS Axs
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error term is avoided. The second pairs function here produces the same tests,
but without p value adjustments.
fit1afex.emm <- emmeans(fit1.afex, "type", data=rpt1.df)
pairs(fit1afex.emm, adjust="tukey")

## contrast estimate SE df t.ratio p.value
## clean - homecage 0.8 1.34 9 0.597 0.9721
## clean - iguana -0.5 2.04 9 -0.245 0.9990
## clean - whiptail -2.6 1.30 9 -1.998 0.3385
## clean - krat -16.3 5.15 9 -3.167 0.0666
## homecage - iguana -1.3 2.92 9 -0.445 0.9905
## homecage - whiptail -3.4 1.75 9 -1.940 0.3634
## homecage - krat -17.1 5.14 9 -3.327 0.0526
## iguana - whiptail -2.1 1.83 9 -1.148 0.7785
## iguana - krat -15.8 4.90 9 -3.222 0.0614
## whiptail - krat -13.7 3.98 9 -3.439 0.0447
##
## P value adjustment: tukey method for comparing a family of 5 estimates
pairs(fit1afex.emm, adjust="none")

## contrast estimate SE df t.ratio p.value
## clean - homecage 0.8 1.34 9 0.597 0.5652
## clean - iguana -0.5 2.04 9 -0.245 0.8119
## clean - whiptail -2.6 1.30 9 -1.998 0.0768
## clean - krat -16.3 5.15 9 -3.167 0.0114
## homecage - iguana -1.3 2.92 9 -0.445 0.6668
## homecage - whiptail -3.4 1.75 9 -1.940 0.0843
## homecage - krat -17.1 5.14 9 -3.327 0.0088
## iguana - whiptail -2.1 1.83 9 -1.148 0.2804
## iguana - krat -15.8 4.90 9 -3.222 0.0104
## whiptail - krat -13.7 3.98 9 -3.439 0.0074

A plotting capabilty of the emmeans grid is possible, including visualization of
CI’s and significant differences. The user should read the help on the emmeans
plotting functions to understand what the symbols mean.
plot(fit1afex.emm, comparisons = TRUE)
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The implementation of a pairwise comparison method that uses a specific error
term, in this 1 factor repeated measure design, could easily be done as a depen-
dent samples “t-test”. For example, the comparison of the iguana and whiptail
conditions is illustrated. Note that the mean difference is the same as the pair-
wise comparison just above from emmeans, as are the t value and p values (with
the table where adjust was set to “none”). Therefore, this “manual” approach
produces the same results as the approach taken above for contrast4 - it is the
same hypothesis test (comparing iguana and whiptail conditions). By using the
dependent samples t-test for all possible pairs in a post hoc type of approach,
the p values could be submitted to the p.adjust function for error rate inflation
correction.
t.test(rpt1w.df$iguana, rpt1w.df$whiptail, paired=TRUE)

##
## Paired t-test
##
## data: rpt1w.df$iguana and rpt1w.df$whiptail
## t = -1.1485, df = 9, p-value = 0.2804
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -6.236306 2.036306
## sample estimates:
## mean difference
## -2.1
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Linear Combinations (contrasts) can also be evaluated in the emmeans ap-
proach using the contrast function to produce the matrix of coefficients, and
the test function to test them. Fortunately, this approach now employs specific
error terms that match how we derived them above both from the mlmfit object
and where we manually calculated them.
lincombs <- contrast(fit1afex.emm,

list(type1=c(4, -1,-1,-1,-1),
type2=c(0, 3, -1, -1, -1),
type3=c(0, 0, -1, -1, 2),
type4=c(0, 0, -1, 1, 0)
))

test(lincombs, adjust="none")

## contrast estimate SE df t.ratio p.value
## type1 -18.6 7.44 9 -2.501 0.0338
## type2 -21.8 8.41 9 -2.591 0.0292
## type3 29.5 8.74 9 3.373 0.0082
## type4 2.1 1.83 9 1.148 0.2804

A plot and table of confidence intervals for the contrasts can also be obtained,
even employing p value adjustments as illustrated here with the bonferroni-
sidak adjustment. As was the case when applied to the afex model object,
specific error terms are employed. In addition, p value adjustments for the
multiple testing problem, are simple to implement with the confint function
that produces adjusted confidence intervals for each contrast.
confint(lincombs, adjust="sidak")

## contrast estimate SE df lower.CL upper.CL
## type1 -18.6 7.44 9 -41.64 4.44
## type2 -21.8 8.41 9 -47.88 4.28
## type3 29.5 8.74 9 2.40 56.60
## type4 2.1 1.83 9 -3.57 7.77
##
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 4 estimates

It is also possible to use the aov_ez flavor of the afex ANOVA functions. This
approach also provides specific error terms in the construction of the t-tests for
the custom set of contrasts.

First the base/omnibus ANOVA is performed:
contrasts(rpt1.df$type) <- contr.sum
fit2afex.ez <- aov_ez(id="snum",

dv="DV",
data=rpt1.df,
within="type")
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summary(fit2afex.ez)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 5533.5 1 3739.7 9 13.3171 0.005324 **
## type 2041.5 4 2077.3 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## type 0.0038542 7.3907e-06
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## type 0.3793 0.005501 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## type 0.4400688 0.003391046

The emmeans contrast approach provides the same specific error terms as when
using the aov_car flavor of the afex approach.
fit2.ez.emm <- emmeans(fit2afex.ez, "type", data=rpt1.df)
lincombsez <- contrast(fit2.ez.emm,

list(type1=c(4, -1,-1,-1,-1),
type2=c(0, 3, -1, -1, -1),
type3=c(0, 0, -1, -1, 2),
type4=c(0, 0, -1, 1, 0)
))

test(lincombsez, adjust="none")

## contrast estimate SE df t.ratio p.value
## type1 -18.6 7.44 9 -2.501 0.0338
## type2 -21.8 8.41 9 -2.591 0.0292
## type3 29.5 8.74 9 3.373 0.0082
## type4 2.1 1.83 9 1.148 0.2804
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The ability to have emmeans perform the correct contrast tests in this one
factor repeated measures ANOVA is welcomed. Its extension to factorial designs
is uncertain.

4.5.1 Use of emmeans on aov fit objects.
The emmeans capabilities extend to many model objects beyond afex fits. Un-
fortunately, when the contrast approach developed above is applied to aov fit
objects, the error terms are not specific. But this could be a useful approach
when the sphericity assumption is confidently met. In fact, when sphericity is
perfect, then all specific error terms will have the exact same numeric value, but
df will be smaller than for the omnibus Axs error term - thus less power.

Here, the original aov fit is reproduced and then the emmeans approach for
contrasts is applied.
contrasts(rpt1.df$type) <- contr.sum
fit.1 <- aov(DV~type + Error(snum/type), data=rpt1.df)
summary(fit.1)

##
## Error: snum
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 3740 415.5
##
## Error: snum:type
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 2042 510.4 8.845 4.42e-05 ***
## Residuals 36 2077 57.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now the custom contrasts approach; notice the df for the errors are all 36,
reflecting use of the omnibus AxS error source rather than specific error terms.
The pattern of significant effects is different than with specific error terms. We
conclude that the way emmeans and contrast operate on fit objects differs for
aov and afex fits. Use of afex fits is preferred.
fit1.aov.emm <- emmeans(fit.1, "type", data=rpt1.df)

## Note: re-fitting model with sum-to-zero contrasts
lincombsaov <- contrast(fit1.aov.emm,

list(type1=c(4, -1,-1,-1,-1),
type2=c(0, 3, -1, -1, -1),
type3=c(0, 0, -1, -1, 2),
type4=c(0, 0, -1, 1, 0)
))

test(lincombsaov, adjust="none")
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## contrast estimate SE df t.ratio p.value
## type1 -18.6 10.74 36 -1.731 0.0919
## type2 -21.8 8.32 36 -2.620 0.0128
## type3 29.5 5.88 36 5.014 <.0001
## type4 2.1 3.40 36 0.618 0.5404

4.6 Commentary on Contrast Analysis with the
Univariate/Multivariate methods

Even if the first decision is made regarding univariate vs multivariate tests,
the user must still decide how to proceed in following up these omnibus tests
with pairwise comparisons or analytical/orthogonal contrasts. Unfortunately,
the most direct method I have found (“split” argument with an aov object‘
employs the omnibus error term in creating standard errors or F tests for such
comparisons. The only ways to obtain specific error terms are with the manual
approaches outlined above or the use of emmeans on an afex model fit. The
manual approaches are not terribly burdensome for a simple 1 factor repeated
measures design, but will become very much more challenging for larger designs
- e.g., two repeated factors or mixed designs with grouping factors and repeated
measures factors.

There may be another way of approaching contrasts using the Linear Mixed
Models methodology seen in the next chapter. That alternative may provide
specific error terms as well.

The conclusion I still hold is that the SPSS MANOVA procedure is efficient
and helpful in pursuing these followup contrast types of questions. Its default
setting of specific error terms is of considerable value in the MANOVA proce-
dure. It is not clear to me why this has not comprehensively found its way
into the R ecosystem such that it is simple to implement. (perhaps there is
still something I haven’t yet learned about the suite of R functions employed
here, especially perhaps emmeans). In attempts to apply these same strategies
to factorial repeated measures designs, the types of error terms used are not so
clearly specific. That work is in other tutorial documents.
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Chapter 5

Linear Mixed Models

As an alternative to the traditional methods found in Chapter 3, this chapter
briefly introduces Linear Mixed Effects Modeling. Although at this point in
the course we have not covered any of the theory of LMM, we can examine the
basics of implementation for this simple one-factor repeated measures design.
LMM is a class of techniques that handle nested/hierarchical designs, and longi-
tudinal growth curve modeling of which repeated measures designs can be seen
as a subset. This suite of methods is designed to handle random factors such
as “subjects” in a repeated measures design. The major advantages of LMM
approaches to repeated measures are:

• Can handle missing data. The traditional approaches usually employ case-
wise deletion if any data points are missing for a case.

• Can handle repeated factors such as time where not all participants are
measured at exactly the same time points or that vary in total number of
time points measured.

• Can specify alternative covariance strutures to the compound symmetry
and sphericity patterns that the traditional methods assume.

Of these, the only one that is important for the one-factor design that is illus-
trated here is the last point.

The illustrations here use two different packages, nlme and lme4. Detailed
training in these methods is advised before routine usage.

5.1 Basic LMM Analysis using lme
Here, I illustrate the lme function from nlme. It requires the same long-format
data frame as the aov function we used for the traditional analysis. That data
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set is imported again here, along with the changes of “snum” to a factor and
reordering the “type” variable levels.
# need "long" form of the data set as in Method I of chapter 3
rpt1.df <- read.csv("data/1facrpt_long.csv")
# change the snum variable to a factor variable (was numeric)
rpt1.df$snum <- as.factor(rpt1.df$snum)
rpt1.df$type <- ordered(rpt1.df$type,

levels=c("clean","homecage","iguana",
"whiptail", "krat"))

# look at beginning and ending few lines of the data frame
gt(headTail(rpt1.df))

snum type DV
1 clean 24
1 homecage 15
1 iguana 41
1 whiptail 30

NA NA ...
10 homecage 7
10 iguana 4
10 whiptail 7
10 krat 23

The syntax of the lme function is somewhat similar to the aov/lm syntax. The
most important specification is the way that the random factor is specified. The
~1|snum/type specification is not intuitively obvious. Understanding it requires
a background in the theory of LMM and a careful reading of the R help page
on the function, neither of which will be reviewed here.

Initially, we fit a model that contains all of the specifics required for the over-
all/omnibus model evaluation. Note that we examine the model with the stan-
dard anova and summary functions that we have become familiar with in other
ANOVA/regression analyses.

In interpreting this initial output, several things become apparent:

1. The anova output yields the same F and p value as the traditional Uni-
variate approach. This is because the traditional GLM approach can be
viewed as a subset of types of LMM analyses and the default covariance
structure is the one of compound symmetry, and that would be a prob-
lematic assumption here too.

2. summary produces information criteria (AIC/BIC) as well as info on the
overall intercept (related to the overall mean) and a term that indicates
that the intercept is permitted to vary across subjects (related to the Axs
interaction).
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3. Information on coefficients reflects the fact that individual contrast vectors
were created and by default, they are those of trend analysis. This is
because the defaults presume that the repeated measure is a time-related
factor and that trend would thus be desireable. Since this is not the case
for our illustration the succeeding code chunks changes the contrasts and
we re-run the analysis.

#require(nlme)
# first, default, LMM model assumes sphericity and reproduces the
# omnibus F test produced as the "average F" in the SPSS MANOVA approach
fit1.lme <- lme(DV ~ type, random = ~1|snum/type, data=rpt1.df)
anova(fit1.lme)

## numDF denDF F-value p-value
## (Intercept) 1 36 13.317097 8e-04
## type 4 36 8.844723 <.0001
summary(fit1.lme)

## Linear mixed-effects model fit by REML
## Data: rpt1.df
## AIC BIC logLik
## 357.0839 371.5372 -170.542
##
## Random effects:
## Formula: ~1 | snum
## (Intercept)
## StdDev: 8.459511
##
## Formula: ~1 | type %in% snum
## (Intercept) Residual
## StdDev: 6.930132 3.110725
##
## Fixed effects: DV ~ type
## Value Std.Error DF t-value p-value
## (Intercept) 10.520000 2.882776 36 3.649260 0.0008
## type.L 11.384200 2.402152 36 4.739167 0.0000
## type.Q 7.964385 2.402152 36 3.315521 0.0021
## type.C 3.004164 2.402152 36 1.250614 0.2191
## type^4 1.446227 2.402152 36 0.602055 0.5509
## Correlation:
## (Intr) type.L type.Q type.C
## type.L 0
## type.Q 0 0
## type.C 0 0 0
## type^4 0 0 0 0
##
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## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.756930607 -0.157209242 -0.003407451 0.137647579 1.550657810
##
## Number of Observations: 50
## Number of Groups:
## snum type %in% snum
## 10 50

In this next section, we recreate the same set of orthogonal contrasts used for
analyses in the traditional approaches found in chapter 3.
# now create contrasts for the type factor
contrasts.type <- matrix(c(4, -1, -1, -1, -1,

0, 3, -1, -1, -1,
0, 0, -1, -1, 2,
0, 0, -1, 1, 0),

ncol=4)
contrasts(rpt1.df$type) <- contrasts.type
contrasts(rpt1.df$type)

## [,1] [,2] [,3] [,4]
## clean 4 0 0 0
## homecage -1 3 0 0
## iguana -1 -1 -1 -1
## whiptail -1 -1 -1 1
## krat -1 -1 2 0

Fitting the model again now employs those orthogonal contrasts. Note that
the t values in the summary table below for these contrasts are not the same
as those we found in chapter 4 using the “manual” method or from our SPSS
work. They do match the t and p values found in using emmeans in chapter
4. The “estimates” shown in the table are correct, reflecting the fact that the
contrast coefficients have been orthonormalized. For example, multiple the first
“estimate” (for type1) by 20 (the sum of the squared coefficients) and the value
is -18.6, the mean of the manually created vector for contrast 1 that was done in
chapter 3. The std errors and the df for the error reveal why there is a mismatch.
In this analysis that is essentially a reproduction of the GLM approach, the 36
df for the error reveals the fact that errors are not specific to the contrast - the
omnibus Axs MS is used in the error. This recreates the same problem with
the sphericity assumption that the GLM approach has if the omnibus Axs error
term is used for contrasts.
fit2.lme <- lme(DV ~ type, random = ~1|snum/type, data=rpt1.df)
anova(fit2.lme)

## numDF denDF F-value p-value
## (Intercept) 1 36 13.317097 8e-04
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## type 4 36 8.844723 <.0001
summary(fit2.lme)

## Linear mixed-effects model fit by REML
## Data: rpt1.df
## AIC BIC logLik
## 365.0495 379.5028 -174.5247
##
## Random effects:
## Formula: ~1 | snum
## (Intercept)
## StdDev: 8.459511
##
## Formula: ~1 | type %in% snum
## (Intercept) Residual
## StdDev: 6.930132 3.110725
##
## Fixed effects: DV ~ type
## Value Std.Error DF t-value p-value
## (Intercept) 10.520000 2.8827764 36 3.649260 0.0008
## type1 -0.930000 0.5371375 36 -1.731400 0.0919
## type2 -1.816667 0.6934415 36 -2.619784 0.0128
## type3 4.916667 0.9806744 36 5.013557 0.0000
## type4 1.050000 1.6985778 36 0.618164 0.5404
## Correlation:
## (Intr) type1 type2 type3
## type1 0
## type2 0 0
## type3 0 0 0
## type4 0 0 0 0
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.756930607 -0.157209242 -0.003407451 0.137647579 1.550657810
##
## Number of Observations: 50
## Number of Groups:
## snum type %in% snum
## 10 50

The phia package has a function called testInteractions that can work on a
lme model object. This function is built to handle factorial designs, and thus
the name testInteractions. But it can handle main effect contrasts which is
what we have in this one-factor design (that can be conceived as a two factor
randomized blocks design). In testing it for the first contrast, the “estimate” is
the expected -18.6 value seen before for this contrast (the “psi” value for the
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linear combination). I have not yet sorted out how the chi-square test statistic
is created, but obviously this function approaches the question in a different
way than the standard methods.
# phia may be able to work on these lme objects to obtain contrasts
#modmeans <- interactionMeans(fit2.lme)
#modmeans
#interactionMeans(fit2.lme, factors="type" )
# define first contrast on the rptd factor
ac1 <- list(type=c(4,-1,-1,-1,-1))
testInteractions(fit2.lme, custom=ac1,adjustment="none")

## Chisq Test:
## P-value adjustment method: none
## Value Df Chisq Pr(>Chisq)
## type1 -18.6 1 2.9977 0.08338 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

At this point, we have not done a full modeling process using LMM. We will
need to implement expansion of the analysis to alternative covariance strutures
and comparisons of different models. We also need to revisit the question of
contrasts. Before we expand the approach, lets examine how a second LMM
function handles the design.

5.2 Basic LMM Analysis using lmer
The lme4 package and its lmer function are used heavily in some cognitive psy-
chology and linguistics research areas. It also uses the same long-format data
frame that we have been using above. The rudimentary approach shown here
recaptures the same omnibus F value that was found with the traditional uni-
variate approach (averaged F test). More detailed modeling is in the following
section.
#require(lme4)
# using the same contrast set as above and from our SPSS MANOVA example
# we can specify our contrasts
#attach(rpt1.df)
contrasts.type <- matrix(c(4, -1, -1, -1, -1,

0, 3, -1, -1, -1,
0, 0, -1, -1, 2,
0, 0, -1, 1, 0),

ncol=4)
contrasts(rpt1.df$type) <- contrasts.type
contrasts(rpt1.df$type)

## [,1] [,2] [,3] [,4]
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## clean 4 0 0 0
## homecage -1 3 0 0
## iguana -1 -1 -1 -1
## whiptail -1 -1 -1 1
## krat -1 -1 2 0
fit1.lmer <- lmer(DV ~ type + (1|snum), data=rpt1.df)
anova(fit1.lmer)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## type 2041.5 510.37 4 36 8.8447 4.424e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit1.lmer)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DV ~ type + (1 | snum)
## Data: rpt1.df
##
## REML criterion at convergence: 349
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8484 -0.3839 -0.0083 0.3361 3.7866
##
## Random effects:
## Groups Name Variance Std.Dev.
## snum (Intercept) 71.56 8.460
## Residual 57.70 7.596
## Number of obs: 50, groups: snum, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.5200 2.8828 9.0000 3.649 0.00532 **
## type1 -0.9300 0.5371 36.0000 -1.731 0.09194 .
## type2 -1.8167 0.6934 36.0000 -2.620 0.01280 *
## type3 4.9167 0.9807 36.0000 5.014 1.44e-05 ***
## type4 1.0500 1.6986 36.0000 0.618 0.54036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) type1 type2 type3
## type1 0.000
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## type2 0.000 0.000
## type3 0.000 0.000 0.000
## type4 0.000 0.000 0.000 0.000

The results from the lmer analysis are identical to those from lme. But neither
of these approaches utilizes the full set of modeling strategies that typical LMM
methods use. The next sections begin to do that.

Our conclusion at this point is that we have put in place LMM code that can
recreate the GLM outcome for this simple one-factor repeated measures design,
including tests of contrasts that use the potentially flawed omnibus residual
term (Axs).

5.3 A modeling approach
The typical approach to LMM methods is to compare models. We have seen the
basics of this idea in an earlier “modeling” document. Here, for LMM models,
there are several possible comparisons. The most rudimentary is to compare the
fully fit model that includes the “type” IV with an intercept-only model. Those
two models are created here, using the lme function.
# Intercept-only Model
basefit1.lme <- lme(DV ~ 1, random = ~1 | snum/type, data=rpt1.df,

method = "ML")
# Augmented Model
typemodel1.lme <- lme(DV ~ type, random = ~1 | snum/type,

data=rpt1.df, method = "ML")
#summary(basefit1.lme)

Now we can use the anova function to compare the two. The full model, called
typemodel1.lme, has lower AIC/BIC indices and the likelihood ratio test is
significant, indicating that the full model is a better fit.

Note that this involves evaluation of only the omnibus effect, and the sphericity
assumption is in place for typemodel1.lme, so it may not be the best model
available. See the following section for an approach that changes the covariance
matrix specification.
anova(basefit1.lme, typemodel1.lme)

## Model df AIC BIC logLik Test L.Ratio p-value
## basefit1.lme 1 4 394.5131 402.1612 -193.2565
## typemodel1.lme 2 8 375.1337 390.4299 -179.5669 1 vs 2 27.37933 <.0001
#summary(typemodel1.lme)
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5.4 Alternative covariance structures
One of the major advantages of LMM approaches is their ability to handle
specifications of alternative covariance matrix structures. Choices are seen in the
help for lme and its “correlation” argument. That will be implemented below,
but first we will repeat what was done above with the first lme illustration. Our
chosen orthogonal contrasts from above are in place.
fit2.lme <- lme(DV ~ type, random = ~1|snum/type, data=rpt1.df)
anova(fit2.lme)

## numDF denDF F-value p-value
## (Intercept) 1 36 13.317097 8e-04
## type 4 36 8.844723 <.0001
#summary(fit2.lme)

The “correlation” argument permits specification of the covariance matrix struc-
ture. For IVs such as a time factor, such covariance structures might reasonably
be autoregressive types, but for our categorical/manipulated IV (type) it is not
clear what the structure might be. First, the compound symmetry/sphericity
structure is specified. This reproduces the results of initial default analysis
where the correlation argument was left out.
fit3.lme <- lme(DV ~ type, random = ~1|snum,

correlation=corCompSymm(form=~1|snum),
#correlation=corSymm(form=~1|snum), # specifies "unstructured"
method = "ML", data=rpt1.df)

anova(fit3.lme)

## numDF denDF F-value p-value
## (Intercept) 1 36 13.317097 8e-04
## type 4 36 8.844723 <.0001
#summary(fit3.lme)

Now we can compare a model with a different covariance structure to this
compound symmetry model. Three models are created here for purposes of
comparison. The first is the intercept-only model that does not require a “cor-
relation” argument since there is no IV specified - this repeats the baseline
model illustrated above. Second is the full model with the compound symmetry
specification. The first two recreate what was done above, just with different
object names specified. The third is the full model, but with an “unstructured”
covariance matrix specified.
# Intercept-only Model
basefit3.lme <- lme(DV ~ 1, random = ~1 | snum/type,

method = "ML", data=rpt1.df)
# Augmented Model with Compound symmetry cov matrix
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typemodel3a.lme <- lme(DV ~ type, random = ~1|snum,
correlation=corCompSymm(form=~1|snum),
#correlation=corSymm(form=~1|snum),
method = "ML", data=rpt1.df)

# Augmented Model with unstructured cov matrix
typemodel3b.lme <- lme(DV ~ type, random = ~1|snum,

#correlation=corCompSymm(form=~1|snum),
correlation=corSymm(form=~1|snum),
method = "ML", data=rpt1.df)

Now we can use the anova function to compare models. First is the repetition of
the intercept-only model and the full model with compound symmetry specified.
This recreates the comparison made above where the conclusion was that the
full model was a better fit.
anova(basefit3.lme, typemodel3a.lme)

## Model df AIC BIC logLik Test L.Ratio p-value
## basefit3.lme 1 4 394.5131 402.1612 -193.2565
## typemodel3a.lme 2 8 375.1337 390.4299 -179.5669 1 vs 2 27.37933 <.0001

The second comparison is between the two full models, the one with the com-
pound symmetry specification (3a) and the one with the unstructured covari-
ance matrix specification (3b). The unstructured matrix version is a better fit
as evaluated by the AIC/BIC criteria and the likelihood ratio test is significant,
providing another indicator of better fit of the unstructured matrix model.
anova(typemodel3a.lme,typemodel3b.lme)

## Model df AIC BIC logLik Test L.Ratio p-value
## typemodel3a.lme 1 8 375.1337 390.4299 -179.5669
## typemodel3b.lme 2 17 343.0687 375.5731 -154.5343 1 vs 2 50.06506 <.0001

The residuals are more directly accessible with an lme object that they were
for the aov object in chapter 3. We can examine the residuals from this lme fit
with a qq plot and/or histogram and we find some evidence of non-normality
with a positive skewness being present. So even though the modeling suggested
the unstructured covariance matrix model was the “best”, it may have some
issues with the normality assumption. We could also pass those residuals to
a normality test such as the Anderson Darling test as we have reviewed in
earlier analyses. We might also plot the residuals against the yhats to evaluate
homoscedasticity (it is problematic with this data set because of the truncated
distributions of the five variables at zero.)
#str(typemodel3b.lme)
qqPlot(typemodel3b.lme$residuals,id=FALSE)
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#hist(typemodel3b.lme$residuals)
#library(nortest)
#ad.test(typemodel3b.lme$residuals)
#plot(typemodel3b.lme$fitted,typemodel3b.lme$residuals)

5.4.1 Contrast evaluation from the alternative covariance
structure model

We can return to the use of the testInteractions function and evaluate the
same first orthogonal contrast employed above. But this time we will utilized
the model that employed the unstructured covariance matrix specification. We
see that the same -18.6 “psi” value is obtained again, but the test statistic value
and the p value differ from the one seen above with the compound symmetry
specification. This indicates a different set of residuals used in the lme model
here. More exploration of how this test is constructed is warranted before usage
can be recommended.
# phia may be able to work on these lme objects to obtain contrasts
#modmeans <- interactionMeans(fit2.lme)
#modmeans
#interactionMeans(fit2.lme, factors="type" )
# define first contrast on the rptd factor
ac1 <- list(type=c(4,-1,-1,-1,-1))
testInteractions(typemodel3b.lme, custom=ac1,adjustment="none")
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## Chisq Test:
## P-value adjustment method: none
## Value Df Chisq Pr(>Chisq)
## type1 -18.6 1 7.6477 0.005684 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.5 Post hoc pairwise comparisons and planned/orthogonal
contrasts

Although we have explored some attempts to evaluate contrasts in the sections
above, using lme models, we broaden the perspective here.

If the analyst wants to perform post hoc pairwise comparison tests, it is also
possible to pass the LMM object to the glht function from the multcomp
package. This method employs a strategy not covered in class and is one that
produces an approximate standard normal Z test statistic. By evaluating type-
model3b.lme, these tests employ standard errors based on the residual from
that analysis where the covariance matrix was specified. The error rate infla-
tion problem is addressed by using the Tukey correction method. Since the std
errors vary from comparison to comparison, it is clear that one single error term
is not employed, thus the errors are specific to the comparison.
library(multcomp)
multcomps <- glht(typemodel3b.lme, linfct = mcp(type = "Tukey"))
summary(multcomps)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme.formula(fixed = DV ~ type, data = rpt1.df, random = ~1 |
## snum, correlation = corSymm(form = ~1 | snum), method = "ML")
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## homecage - clean == 0 -0.800 1.226 -0.653 0.93692
## iguana - clean == 0 0.500 1.906 0.262 0.99775
## whiptail - clean == 0 2.600 1.029 2.527 0.05893 .
## krat - clean == 0 16.300 4.734 3.443 0.00348 **
## iguana - homecage == 0 1.300 2.661 0.489 0.97676
## whiptail - homecage == 0 3.400 1.455 2.337 0.09376 .
## krat - homecage == 0 17.100 4.777 3.580 0.00234 **
## whiptail - iguana == 0 2.100 1.755 1.196 0.64896
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## krat - iguana == 0 15.800 4.290 3.683 0.00142 **
## krat - whiptail == 0 13.700 3.962 3.458 0.00320 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

The ghlt function is also capable of evaluating a set of user-specified contrasts of
any kind. Here, I created a matrix of our standard set of orthogonal contrasts
employed elsewhere in this document and passed them to the glht function
based on the unstructured covariance matrix model. Note that the errors differ
for the four contrasts and are specific. This may be the best alternative for eval-
uating these contrasts with this data set, starting with the best fit LMM model,
although an emmeans approach is found below. Note that the “estimates”
here are the correct values for the means of the four chosen contrasts that we
have examined previously. The reason that these effects are tested using a Z
test statistic, rather than a t, is not apparent - requires beter understanding of
ghlt.
contr <- rbind("clean_vs_all" = c(4,-1,-1,-1,-1),

"hc_vs_three" = c(0,3,-1,-1,-1),
"krat_vs_lizards" = c(0, 0,-1, -1, 2),
"iguana_vs_whiptail" = c(0,0,1,-1,0))

multcontrasts.lmm <- glht(typemodel3b.lme, linfct = mcp(type = contr))
summary(multcontrasts.lmm)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: lme.formula(fixed = DV ~ type, data = rpt1.df, random = ~1 |
## snum, correlation = corSymm(form = ~1 | snum), method = "ML")
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## clean_vs_all == 0 -18.600 6.726 -2.765 0.0181 *
## hc_vs_three == 0 -21.800 7.672 -2.841 0.0144 *
## krat_vs_lizards == 0 29.500 8.069 3.656 <0.001 ***
## iguana_vs_whiptail == 0 -2.100 1.755 -1.196 0.5049
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
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5.5.1 Use of emmeans on the lme model
It is worth noting that emmeans can also perform its many capabilities on a
lme model object. Here, we find that the t-tests are based on 36 df, implying
use of some omnibus residual term. The t values do not match the univariate
approach in chap 4 when emmeans was employed for the aov model object
and they do not match those found from the initial lme approach, so the altered
covariance stucture object produced different residuals. It is not clear how the
concept of a “specific” error term fits into the linear mixed effects modeling
framework.
fit3b.lme.emm <- emmeans(typemodel3b.lme, "type", data=rpt1.df)
lincombslme <- contrast(fit3b.lme.emm,

list(type1=c(4, -1,-1,-1,-1),
type2=c(0, 3, -1, -1, -1),
type3=c(0, 0, -1, -1, 2),
type4=c(0, 0, -1, 1, 0)
))

test(lincombslme, adjust="none")

## contrast estimate SE df t.ratio p.value
## type1 -18.6 7.09 36 -2.624 0.0127
## type2 -21.8 8.09 36 -2.696 0.0106
## type3 29.5 8.51 36 3.468 0.0014
## type4 2.1 1.85 36 1.135 0.2639
##
## Degrees-of-freedom method: containment
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Chapter 6

Bayesian Approaches

With the many and varied styles of Bayesian Analysis, it is difficult to find
succinct advice on the relative merits of the various approaches. But the avail-
ability of BayesFactor-based algorithms and their ease of use has made them a
go-to approach. This section will not attempt to provide a thorough overview of
implementation of Bayesian inference for the repeated measure design. Instead,
it will demonstrate the utility of the BayesFactor package. Those interested in
Bayesian inference should consult the work of John Kruschke to see alternative
approaches.

6.1 Bayes Factor analysis
The approach used in the BayesFactor package is somewhat analogous to the
way we specified LMM models. The anovaBF function simply requires specifica-
tion of a standard model, including the case variable. The key is the specification
of that case variable (snum) as a random factor with the “whichRandom” argu-
ment. The default prior for the effect with BayesFactor functions is Cauchy
with a scale parameter 𝑟 =

√
2/2.

Note that the anovaBF function uses the long-format data frame that was ini-
tially introduced in chapter 2. The large BF (555.149) indicates substantial
evidence in support of the alternative hypothesis relative to a model that ex-
cludes the “type” factor.
mod1.bf = anovaBF(DV ~type + snum, data = rpt1.df,

whichRandom="snum")
mod1.bf

## Bayes factor analysis
## --------------
## [1] type + snum : 564.1317 ±1.5%
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##
## Against denominator:
## DV ~ snum
## ---
## Bayes factor type: BFlinearModel, JZS

In this simple model there is only one model comparison of interest, the full
model with “type” vs an intercept only model. That is the comparison reported
by the code above, so no further model comparison strategies are required.

The first of two remaining issues could be addressed in future revisions of this
chapter. That first issue is the logic for choice of priors in repeated measures
designs - we have used the commonly employed default method in anovaBF. The
second is a return to the question of how to do contrast analysis or post hoc
pairwise tests. An indirect way of doing contrasts from a Bayesian perspective
is addressed next.

6.2 Contrasts with BayesFactor methods?
One way of approaching contrasts with the BF method is to return to the
manually created contrast variables initially examined in chapter 3. I will repeat
the creation of those objects here using the wide format data frame.
rpt1w.df <- mutate(rpt1w.df,

ac1=(4*clean+(-1)*homecage+(-1)*iguana+(-1)*whiptail+(-1)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac2=(0*clean+(3)*homecage+(-1)*iguana+(-1)*whiptail+(-1)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac3=(0*clean+(0)*homecage+(-1)*iguana+(-1)*whiptail+(2)*krat))
rpt1w.df <- mutate(rpt1w.df,

ac4=(0*clean+(0)*homecage+(-1)*iguana+(1)*whiptail+(0)*krat))
gt(rpt1w.df)

snum clean homecage iguana whiptail krat ac1 ac2 ac3 ac4
1 24 15 41 30 50 -40 -76 29 -11
2 6 6 0 6 13 -1 -1 20 6
3 4 0 5 4 9 -2 -18 9 -1
4 11 9 10 14 18 -7 -15 12 4
5 0 0 0 0 0 0 0 0 0
6 8 15 10 15 38 -46 -18 51 5
7 8 5 2 6 15 4 -8 22 4
8 0 0 0 11 54 -65 -65 97 11
9 0 3 1 1 11 -16 -4 20 0

10 7 7 4 7 23 -13 -13 35 3
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Originally we did four separate one-sample t-tests (null was that each linear
combination contrast had a mean of zero). We can do that again, but using BF
methods for the 1-sample t-test analog. I illustrate here by examining the third
contrast which compares the kangaroo rat condition to the average of the two
lizard conditions. The alternative hypothesis that the effect size is not zero is
favored moderately.
ttestBF(rpt1w.df$ac3, mu=0)

## Bayes factor analysis
## --------------
## [1] Alt., r=0.707 : 7.261164 ±0%
##
## Against denominator:
## Null, mu = 0
## ---
## Bayes factor type: BFoneSample, JZS
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Chapter 7

Robust and Resampling
Methods

A few illustrations of robust methods, permutation testing, and bootstrapping
are illustrated here. Some authors treat non-parametric tests as members of
the class of robust methods. We have already reviewed that topic in a previous
chapter.

7.1 Robust Tests
Wilcox has provided a wealth of robust methods for various inferential tests
and designs with the WRS2 package (Mair and Wilcox, 2020). The 1-factor
repeated measures design is evaluated with the rmanova function. This function
requires the long format data and we will use the initial one first used in this
document in chapter 2. The robust method evaluates trimmed means and the
“tr” argument specifies the degree of trimming. When tr=0, rmanova replicates
the traditional ANOVA and produces the familiar F value from those earlier
analyses. I illustrate here with “tr=.2”, but the small number of data points
per condition (ten) may mean that this level of trimming is too large. Note that
the F statistic from the robust/trimmed approach is smaller than with “tr=0”,
but the test is still significant even with reduced/adjusted df.
library(WRS2)
#rmanova(rpt1.df$DV, groups=rpt1.df$type, blocks=rpt1.df$snum, tr=0)
rmanova(rpt1.df$DV, groups=rpt1.df$type, blocks=rpt1.df$snum, tr=.2)

## Call:
## rmanova(y = rpt1.df$DV, groups = rpt1.df$type, blocks = rpt1.df$snum,
## tr = 0.2)
##
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## Test statistic: F = 5.6244
## Degrees of freedom 1: 1.32
## Degrees of freedom 2: 6.61
## p-value: 0.04576

Also from WRS2, the rmmcp function implements tests of pairwise condition
comparisons. Wilcox indicates that the method derives critical p-values using
the Rom (1990) method where the alpha level is smaller for comparisons with
smaller observed p-values. Rom’s method is a modification of the Hochberg
approach to p value adjustment for multiple comparisons. Note that with ten
comparisons and the alpha rate correction, power is not high and only one of the
comparisons is significant when tr=.2 (none when tr=0). See Wilcox’ writings
(Wilcox, 2017) for further explanation. The details are not in the help page for
rmmcp. Unlike what Wilcox text says, the current version of rmmcp from WRS2
function does not have an argument to change to the method of Hochberg or
other methods of adjusting critical p values.
allpairs1 <- rmmcp(rpt1.df$DV, groups=rpt1.df$type, blocks=rpt1.df$snum, tr=.2)
#str(allpairs1)
allpairs1

## Call:
## rmmcp(y = rpt1.df$DV, groups = rpt1.df$type, blocks = rpt1.df$snum,
## tr = 0.2)
##
## psihat ci.lower ci.upper p.value p.crit sig
## clean vs. homecage 0.83333 -2.81237 4.47903 0.32500 0.02500 FALSE
## clean vs. iguana 0.33333 -4.13565 4.80232 0.73634 0.05000 FALSE
## clean vs. whiptail -1.66667 -8.66274 5.32941 0.30702 0.01690 FALSE
## clean vs. krat -12.33333 -34.36130 9.69464 0.04421 0.00730 FALSE
## homecage vs. iguana 1.16667 -3.49487 5.82820 0.28580 0.01270 FALSE
## homecage vs. whiptail -1.66667 -7.71383 4.38050 0.24540 0.01020 FALSE
## homecage vs. krat -12.50000 -29.68804 4.68804 0.01782 0.00568 FALSE
## iguana vs. whiptail -2.66667 -8.50075 3.16742 0.08093 0.00851 FALSE
## iguana vs. krat -12.00000 -24.04772 0.04772 0.00508 0.00511 TRUE
## whiptail vs. krat -11.16667 -27.77203 5.43870 0.02373 0.00639 FALSE

One could use the p.adjust function to apply other p value adjustment methods.
First, we can extract the list of ten p values from the “allpairs1” object.
pvals1 <- allpairs1$comp[1:10,6]
pvals1

## [1] 0.324998613 0.736344309 0.307018998 0.044212265 0.285798317 0.245404979
## [7] 0.017822300 0.080927194 0.005084467 0.023730192

Then we can apply the p.adjust function to that vector. Results not shown to
save space.
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p.adjust(pvals1, method="none")
p.adjust(pvals1, method="bonferroni")
p.adjust(pvals1, method="holm")
p.adjust(pvals1, method="hoch")
p.adjust(pvals1, method="hommel")
p.adjust(pvals1, method="BH")
p.adjust(pvals1, method="BY")
p.adjust(pvals1, method="fdr")

The raw, unadjusted, p values find four of the ten pairs to differ at the nominal
.05 alpha level. When using any of the p.adjust methods, no pairs are found
to differ. The Rom method has slightly more power and found that one of the
pairs, iguana vs krat, differs.

Looking back at all ten pairs of difference, it is interesting to note that the
iguana vs krat comparison is not the pair with the largest mean difference (the
psihat value). This seeming discrepancy comes about because each test is done
as a paired groups test (dependent samples test) and the standard error of the
difference can vary between pairs as well as the mean difference. This assertion
can be checked by rerunning the rmmcp function without any trimming and then
comparing the results from one pair to a dependent samples t-test for the same
pair.
rmmcp(rpt1.df$DV, groups=rpt1.df$type, blocks=rpt1.df$snum, tr=0)

## Call:
## rmmcp(y = rpt1.df$DV, groups = rpt1.df$type, blocks = rpt1.df$snum,
## tr = 0)
##
## psihat ci.lower ci.upper p.value p.crit sig
## clean vs. homecage 0.8 -4.14409 5.74409 0.56521 0.01690 FALSE
## clean vs. iguana -0.5 -8.02647 7.02647 0.81187 0.05000 FALSE
## clean vs. whiptail -2.6 -7.40129 2.20129 0.07680 0.00851 FALSE
## clean vs. krat -16.3 -35.29012 2.69012 0.01142 0.00730 FALSE
## homecage vs. iguana -1.3 -12.07890 9.47890 0.66683 0.02500 FALSE
## homecage vs. whiptail -3.4 -9.86598 3.06598 0.08429 0.01020 FALSE
## homecage vs. krat -17.1 -36.06142 1.86142 0.00883 0.00568 FALSE
## iguana vs. whiptail -2.1 -8.84647 4.64647 0.28037 0.01270 FALSE
## iguana vs. krat -15.8 -33.89064 2.29064 0.01045 0.00639 FALSE
## whiptail vs. krat -13.7 -28.39754 0.99754 0.00740 0.00511 FALSE
t.test(rpt1w.df$iguana, rpt1w.df$krat, paired=T)

##
## Paired t-test
##
## data: rpt1w.df$iguana and rpt1w.df$krat
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## t = -3.2225, df = 9, p-value = 0.01045
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -26.891493 -4.708507
## sample estimates:
## mean difference
## -15.8

7.2 Resampling Methods
Both permutation tests and bootstrapping of repeated measures de-
signs would have to focus on resampling the data points within each
case/subject/participant. Resampling of cases as a whole would not make sense
since that variation is what is “controlled for” by doing the repeated measures
analysis. I have not found many illustrations of these methods for repeated
measures designs.

7.2.1 Howell’s permutation approach
David Howell has shared R code for manually performing a permutation test
with the 1-factor repeated measures design. I have adapted it here for our
five-category design.

https://www.uvm.edu/~statdhtx/StatPages/Randomization%20Tests/
RepeatedMeasuresAnovaR.html

The approach finds a way to reshuffle the five DV values for each case, randomly
and within each case. The primary output is a frequency histogram of all of the
F values produced by this procedure - 1000 of them since I specifed the number
of resamplings as that value. Note that our observed F value for the data set is
actually larger than any of the 1000 permuted samples and thus the empirical
p-value is zero, an outcome that is rather extreme.

The function requires the long-format data frame which is imported here once
again and given a different name so as to not confuse it with any of the earlier
data frames in this document.

A note of caution about this method: I have carefully examined Howell’s code
and found that it does accomplish the permutations as intended. However, for
our data set, the empirical distribution of F values has a large and suprising
majority of values well less than 1.0. This strikes me as an unexpected outcome.
Perhaps the non-sphericity in our data set is contributing to the extreme position
of our observed F value (8.847) relative to the empirical sampling distribution
based on permutations. This requires more exploration.
data <- read.csv("data/1facrpt_long.csv")
# make sure that the case variable is a factor
data$snum <- factor(data$snum)
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# change the order of the factor levels of type
# to match the original order
# and match our prior SPSS work, including setting
# up contrasts
data$type <- ordered(data$type,

levels=c("clean","homecage","iguana",
"whiptail", "krat"))

# specify sum to zero contrasts for the type factor
options(contrasts=c("contr.sum","contr.poly"))
aovbase <- aov(DV~type + Error(snum/type), data = data)
#str(summary(aovbase))
obtF <- summary(aovbase)$"Error: snum:type"[[1]][[4]][1]
#obtF
par( mfrow = c(2,2))
boxplot(data$DV~data$type)
nreps <- 1000
counter <- 0
Fsamp <- numeric(nreps)
levels <- c(1:5)
permTypes <-NULL
orderedType <- data[order(data$type),]
set.seed(12357)
for (i in 1:nreps) {
for (j in 1:10) {
permTypes <- c(permTypes, sample(levels,5,replace = FALSE))
}

orderedType$permTypes <- permTypes
sampAOV <- aov(DV~factor(permTypes)+Error(factor(snum)),

data = orderedType)
Fsamp[i] <- summary(sampAOV)$"Error: Within"[[1]][[4]][1]
if (Fsamp[i] > obtF) counter = counter + 1
permTypes <- NULL
}

p <- counter/nreps
cat("The probability of sampled F greater than obtained F is = ", p, '\n')

## The probability of sampled F greater than obtained F is = 0
hist(Fsamp, breaks = 50, bty = "n")
legend(1,50,bquote(paste(p == .(p))), bty = "n" )
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7.3 Bootstrappping
I don’t see much usage of bootstrapping with repeated measures designs, or with
more complex factorial designs either. But it can be done although with more
complex designs, multiple approaches have to be considered. With our simple
1-factor repeated measures design, the bootstrapping is more straight forward,
requiring resampling within each case, across the five conditions. One very easy
implementation uses a function provided in the WRS2 package. The rmanovab
function implements bootstrapping along with robust estimation using trimmed
means. The first illustration here sets the trimming to zero, thus matching the
core non-robust approach.

The rmanovab function can use the same long-format data frame that has been
the commonly used one in this document. Here, I use the long-format data
frame object created just above for the permutation illustration. The function
requires two initial arguments specifying the DV and the IV. The number of
bootstrap samples is set to 1000 here (probably overkill) and the trimming to
zero. The analysis reports the original F value and compares it to the 95th
percentile empirical F distribution cutoff. In this illustration our omnibus F
exceeds that critical value, so the null is rejected.

Note that in this illustration, trimming is probably not a good idea with only
n=10. Doing trimming results in a substantial power loss here. The function
help does not make it clear exactly how the bootstrapping is done, and I have
some curiosity about whether bootstrapping whole cases has been performed.
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If that is the case, then it is not clear that it is the best approach. It requires
a bit more exploration of Wilcox’ algorithms before I can be fully confident in
what the results mean.
library(WRS2)
set.seed(12345)
rmanovab(data$DV, data$type, data$snum, nboot = 1000, tr=0)

## Call:
## rmanovab(y = data$DV, groups = data$type, blocks = data$snum,
## tr = 0, nboot = 1000)
##
## Test statistic: 8.8447
## Critical value: 6.9944
## Significant: TRUE

The pairdepb function is another WRS2 function that does bootstrapping. It
produces pairwise comparison tests for all possible pairs. From the function
help, it is not clear exactly how the bootstrapping is done and it is surprising
that all of the CV are identical and none significant. I need to work through
Wilcox’ textbook a bit more on this function before I can recommend it.
## post hoc
set.seed(12354)
pairdepb(data$DV, data$type, data$snum, nboot = 1000, tr=0)

## Call:
## pairdepb(y = data$DV, groups = data$type, blocks = data$snum,
## tr = 0, nboot = 1000)
##
## psihat ci.lower ci.upper test crit sig
## clean vs. homecage 0.8 -6.05004 7.65004 0.45083 6.17647 FALSE
## clean vs. iguana -0.5 -11.20390 10.20390 1.05789 6.17647 FALSE
## clean vs. whiptail -2.6 -16.06131 10.86131 -1.14708 6.17647 FALSE
## clean vs. krat -16.3 -55.36506 22.76506 -2.23985 6.17647 FALSE
## homecage vs. iguana -1.3 -11.53631 8.93631 0.80452 6.17647 FALSE
## homecage vs. whiptail -3.4 -14.69917 7.89917 -1.63989 6.17647 FALSE
## homecage vs. krat -17.1 -54.42551 20.22551 -2.42698 6.17647 FALSE
## iguana vs. whiptail -2.1 -12.16089 7.96089 -2.66027 6.17647 FALSE
## iguana vs. krat -15.8 -51.53824 19.93824 -2.76520 6.17647 FALSE
## whiptail vs. krat -13.7 -43.26975 15.86975 -2.43691 6.17647 FALSE
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Chapter 8

Nonparametric Approaches

Non-parametric methods are often employed when variables are not measured
with interval-level measurement or when the normality assumptions cannot be
satisfied. They typically transform the data to ranks prior to analysis. A good
source to review these methods is the Hollander, et al, textbook (Hollander
et al., 2013).

There is one easily implemented non-parametric test for the 1-factor repeated
measures omnibus test. It is the Friedman’s Rank Sum test and is implemented
in the base R installation with the friedman.test function.

The function requires the data in wide format but also in matrix form, where the
only variables are the repeated measure factor levels. The matrix is arranged
so that the levels are columns. We already used this wide format matrix for
multivariate linear modeling in chapter 2, so that matrix is still available.
kable(rpt1w.mat)

clean homecage iguana whiptail krat
24 15 41 30 50
6 6 0 6 13
4 0 5 4 9

11 9 10 14 18
0 0 0 0 0
8 15 10 15 38
8 5 2 6 15
0 0 0 11 54
0 3 1 1 11
7 7 4 7 23

Execution of the function is accomplished by passing only one argument, the
name of the data matrix. The test statistic is a chi-squared variable and it is
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significant for this data set. Degrees of freed are found as the number of levels
of the repeated factor minus one.
friedman.test(rpt1w.mat)

##
## Friedman rank sum test
##
## data: rpt1w.mat
## Friedman chi-squared = 22.061, df = 4, p-value = 0.0001949
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Chapter 9

Trend Analysis and A
Pre-Post Design

This chapter utilizes two different data sets than the core one used in prior
chapter. There are three goals. First is to review and extend some of the
core analyses found in prior chapters. The second is to implement orthogonal
trend analysis in a design where the repeated factor is a quantitative variable
(time). The third is to approach a commonly used design, the pre-post design
and emphasize the use of analytical and orthogonal contrasts to approach the
primary questions posed by such a design. These analyses will confront the issue
of appropriate choice of error terms for contrasts as seen in earlier chapters with
recommended approaches.

9.1 Trend Analysis
This illustration uses a data set from the Maxwell, Delaney and Kelley (2017)
textbook on experimental design and analysis. It is a hypothetical data set
where a set of twelve children had been measured at each of four ages. The
dependent variable is an age-normed score of a general cogntive test, the “Mc-
Carthy Scale of Children’s Ability”. As a one factor repeated measure design,
the traditional method views the study as a factorial of the two variables, Age
and Subject. The four ages are 30, 36, 42 and 48 months and thus represent
points on a continuum. This means that the IV levels can be viewed as a rep-
resenting points on a quantitative scale, and trend analysis is appropriate. An
apriori hypothesis might predict that children’s cognitive abilities are growing
rapidly and largely linearly at these ages. But the shape of the curve might
have a bend, reflecting a quadratic component. This design can also be viewed
through the lens of a longitudinal growth curve design where linear mixed mod-
eling would be appropriate. But since there are no missing data and all subjects
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were measured at the same time, we will illustrate the traditional “univariate
ANOVA” approach here.

9.1.1 Import the data and perform EDA.
The data file are imported as a long-format .csv file where the McCarthy Scale
score is called DV and the IV is called age. There is also a “subject” number
variable.
mdklong <- read.csv("data/maxwell_tab11_5long.csv", stringsAsFactors=TRUE)
headTail(mdklong)

## subject age DV
## 1 1 thirty_months 108
## 2 1 thirtysix_months 96
## 3 1 fortytwo_months 110
## 4 1 fortyeight_months 122
## ... ... <NA> ...
## 45 12 thirty_months 113
## 46 12 thirtysix_months 117
## 47 12 fortytwo_months 132
## 48 12 fortyeight_months 130

Three preparatory steps are needed. First, we convert the numeric type variable,
subject, to a factor. Then the levels of the IV (age) are placed in the correct order
since as character variable, the default would be to order them alphabetically.
Finally, a new numeric variable is created, reflecting the actual months of age
of the measurement - four levels, equally spaced. The last step is required for
drawing line graphs depicting the age growth curve, even though using age as
a factor is how the analytical methods proceed.
mdklong$subject <- as.factor(mdklong$subject)
mdklong$age <- ordered(mdklong$age,

levels=c("thirty_months", "thirtysix_months",
"fortytwo_months", "fortyeight_months"))

mdklong$agenumeric <- dplyr::recode(mdklong$age,
"thirty_months" = 30,
"thirtysix_months" = 36,
"fortytwo_months" = 42,
"fortyeight_months" = 48)

headTail(mdklong)

## subject age DV agenumeric
## 1 1 thirty_months 108 30
## 2 1 thirtysix_months 96 36
## 3 1 fortytwo_months 110 42
## 4 1 fortyeight_months 122 48
## ... <NA> <NA> ... ...
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## 45 12 thirty_months 113 30
## 46 12 thirtysix_months 117 36
## 47 12 fortytwo_months 132 42
## 48 12 fortyeight_months 130 48

In preparation for using ggplot2 for graphing, we derive some summary statis-
tics u sing the Rmisc::summarySE function. The mean of each category is under
the column labeled “DV”.
summary.mdk.b <- Rmisc::summarySE(mdklong,

measurevar="DV",
groupvars="agenumeric",
conf.interval=.95)

summary.mdk.b

## agenumeric N DV sd se ci
## 1 30 12 103 13.71131 3.958114 8.711750
## 2 36 12 107 14.16141 4.088046 8.997729
## 3 42 12 110 13.34166 3.851407 8.476889
## 4 48 12 112 14.76482 4.262237 9.381121

An initial graph plots the means of the four ages and also shows the raw data
points. The means do depict a largely linear increase in scores, but analysis of
that linearity will evaluate whether it is large, relative to sampling noise, when
the inferential tests are done.
p1 <- ggplot(data=summary.mdk.b, aes(x=agenumeric, y=DV)) +
geom_line()+
geom_point(data=mdklong, aes(x=agenumeric, y=DV)) +
geom_point(color="blue", size=4) +
scale_x_continuous(breaks=seq(30,50,6))+
xlab("Age (months)") +
ylab("McCarthy Scale Score")+
ggtitle("Mean Scores as a function of Age Plus Raw Data Points")+
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p1
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Although the first graph showed the raw data points, it does not permit visual-
ization of the pattern of change across age for each subject. We naturally wonder
how consistently subjects show this linear increasing trend that is seen with the
means. A profile plot provides this information. Although most subjects tend
to increase scores across age, not all do, and there is some inconsistency in the
pattern of increase - different shapes. This latter inconsistency in linearity is
why a specific error term to test each trend component is useful/important as
we will see below.
p2 <- ggplot(mdklong, aes(age, DV, colour=subject)) +
geom_point(size = 2.5) +
geom_line(aes(group = subject), size = 1) +
xlab("Age") +
ylab("McCarthy Scale Score") +
scale_colour_grey() +
ggtitle("Profile Plot of Score by Subject") +
theme_minimal() +
theme(legend.position = "none") + # removes legend
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p2
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9.1.2 The omnibus analysis for the McCarthy Scale by
Age dataset

The omnibus ANOVA is most efficiently accomplished with the aov_car func-
tion from the afex package. This code chunk requests that analysis plus the
Greenhouse-Geisser correction for non-sphericity. First, it is useful to recall
that setting the contrasts for the IV to “sum to zero” contrasts (effect coding)
is desireable for these repeated measure designs, although later we will change
the contrasts to orthogonal polynomial (trend) contrasts which are also a type
of “sum to zero” contrast.

Use of the summary function on the aov_car object produces the ominbus F
test (uncorrected), which is significant here. The Mauchley sphericity test is
also provided and it is significant with an epsilon value a good bit below 1.0,
so we are concerned about use of the omnibus Axs error term in this analysis.
The corrected F tests using both the GG and Huynh-Feldt corrections are not
significant. This is not necessarily a problem since the primary “a priori” hy-
pothesis was for a linear increase and the test of that is more interesting than
the test of the omnibus null hypothesis.
contrasts(mdklong$age) <- contr.sum
fit1.mdk <- aov_car(DV ~ age + Error(subject/age), data=mdklong,

anova_table = list(correction = "GG", es="ges"))
summary(fit1.mdk)

##
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## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 559872 1 6624 11 929.7391 5.586e-12 ***
## age 552 3 2006 33 3.0269 0.04322 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## age 0.24265 0.017718
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## age 0.60954 0.07479 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## age 0.7248502 0.06353773

A quick way of obtaining a corrected F test plus the generalized effect size
statistics is just to ask for the contents of the fit1.mdk object.
fit1.mdk

## Anova Table (Type 3 tests)
##
## Response: DV
## Effect df MSE F ges p.value
## 1 age 1.83, 20.11 99.73 3.03 + .060 .075
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
##
## Sphericity correction method: GG

9.1.3 Implementing Orthogonal Polynomial Trend Analy-
sis

Trend analysis is begun by specifying the polynomial contrast set for the IV
factor. I included the exact values of the IV levels (with the “scores” argument),
although it was not necessary here because the default is to assume equal spacing
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of the IV levels, which we have. Notice the fractional values of the contrast
coefficients. These have been orthonormalized. Note that the IV that is used is
the age factor which does not have numeric values. The exact numeric values
of the age levels are indicated with the “scores” argument.
contrasts(mdklong$age) <- contr.poly(4,scores=(c(30,36,42,48)))
contrasts(mdklong$age)

## .L .Q .C
## thirty_months -0.6708204 0.5 -0.2236068
## thirtysix_months -0.2236068 -0.5 0.6708204
## fortytwo_months 0.2236068 -0.5 -0.6708204
## fortyeight_months 0.6708204 0.5 0.2236068

We can check to see that the contrasts are orthonormalized with simple functions
since the contrasts are a matrix. First we square the values and the sum the
columns of the matrix to see that they do, in fact, sum to 1.0.
colSums(contrasts(mdklong$age)^2)

## .L .Q .C
## 1 1 1

If the IV levels had been unequally spaced, the contrast function could handle
that by specifying the values of the levels with the “scores” argument. For
example, if the levels were 30, 36, 45, and 60 months, the code would be this:
# code chunk not run
#contrasts(mdklong$age) <- contr.poly(4,scores=(c(30,36,45,60)))
#contrasts(mdklong$age)

One way of testing each of the contrasts is to use the “split” argument on the
summary function where the ANOVA object is produced by the aov function.
Note that the “residuals” term is the MS Axs residual from the omnibus ANOVA.
This is the flawed error term that should not be used if there is non-sphericity.
Unfortunately the first summary table here does not show that MS Axs term
and it is easy to assume that the error term labled “Residuals” is what was used
in the denominator of the F values. Some quick arithmetic can verify that (e.g.,
540.0/602.2 does not equal the F value of 8.883 for the linear term). Use of the
summary function without the “split” argument in the succeeding code chunk
reveals that the MS Axs value of 60.79, with its 33 df, is the denominator of all
three of the contrast F values in this “split” table. Since this data set appeared
to have some clear degree of non-sphericity, the omnibus error term should be
avoided in favor of specific error terms for each contrast.
fit2.mdk <- aov(DV ~ age + Error(subject/age), data=mdklong)
summary(fit2.mdk, split=list(age=list(linear=1, quadratic=2, cubic3=3)))

##

102



## Error: subject
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 11 6624 602.2
##
## Error: subject:age
## Df Sum Sq Mean Sq F value Pr(>F)
## age 3 552 184.0 3.027 0.04322 *
## age: linear 1 540 540.0 8.883 0.00537 **
## age: quadratic 1 12 12.0 0.197 0.65972
## age: cubic3 1 0 0.0 0.000 1.00000
## Residuals 33 2006 60.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fit2.mdk)

##
## Error: subject
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 11 6624 602.2
##
## Error: subject:age
## Df Sum Sq Mean Sq F value Pr(>F)
## age 3 552 184.00 3.027 0.0432 *
## Residuals 33 2006 60.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.1.4 Specific error terms for the Trend contrasts
Earlier in this document, in chapters 3 and 4, we saw the difficulty of finding
a way to obtain specific error terms. for example Alinear x subject. Since we
need them for this trend analysis, we can take the approach of creating new
variables for each trend component by applying the trend coefficients to the
data for each subject, individually. This method creates three new variables
(linear, quadratic, and cubic) and values of them for each subject, which are
then each submitted to a one-sample t-test against a null hypothesis of zero. A
plot can also be drawn.

The approach uses a wide form of the data set and then converts the DV data
to a matrix so that matrix multiplication methods can be applied.
mdkwide <- read.csv("data/maxwell_tab11_5wide.csv")
headTail(mdkwide)

## subject thirty_months thirtysix_months fortytwo_months fortyeight_months
## 1 1 108 96 110 122
## 2 2 103 117 127 133
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## 3 3 96 107 106 107
## 4 4 84 85 92 99
## ... ... ... ... ... ...
## 9 9 84 104 100 88
## 10 10 96 100 103 105
## 11 11 105 114 105 112
## 12 12 113 117 132 130
mwide <- as.matrix(mdkwide[, 2:5]) # only uses the DV variables, leaving subject out
headTail(mwide)

## thirty_months thirtysix_months fortytwo_months fortyeight_months
## 1 108 96 110 122
## 2 103 117 127 133
## 3 96 107 106 107
## 4 84 85 92 99
## ... ... ... ... ...
## 9 84 104 100 88
## 10 96 100 103 105
## 11 105 114 105 112
## 12 113 117 132 130

Now the data set is a 12x4 matrix. The contrasts matrix used above is a 4x3
matrix. If we post-multitply the data matrix by the coefficients matrix, the
product will contain three new variables that are the creation of the trend
component value for each subject. To reiterate, the contrast coefficients are
applied to data points from each case individually, rather than to condition
means. The inferential result will be the same, but this is a direct method of
obtaining error terms specific to each contrast.
trendmat <- mwide%*%contrasts(mdklong$age)
trendmat

## .L .Q .C
## [1,] 12.521981 12 -6.260990e+00
## [2,] 22.360680 -4 0.000000e+00
## [3,] 7.155418 -5 3.130495e+00
## [4,] 11.627553 3 -1.341641e+00
## [5,] -1.341641 -8 -4.472136e-01
## [6,] -15.205262 -1 3.130495e+00
## [7,] -1.788854 3 3.130495e+00
## [8,] 19.230185 9 -6.260990e+00
## [9,] 1.788854 -16 3.577709e+00
## [10,] 6.708204 -1 -3.552714e-15
## [11,] 2.683282 -1 7.602631e+00
## [12,] 14.758049 -3 -6.260990e+00

Next we return the trend contrast matrix to the form a data frame and change
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the column/variable names to make the labeling more clear.
trendcontrasts <- as.data.frame(trendmat)
colnames(trendcontrasts) <- c("linear", "quadratic", "cubic")
headTail(trendcontrasts)

## linear quadratic cubic
## 1 12.52 12 -6.26
## 2 22.36 -4 0
## 3 7.16 -5 3.13
## 4 11.63 3 -1.34
## ... ... ... ...
## 9 1.79 -16 3.58
## 10 6.71 -1 0
## 11 2.68 -1 7.6
## 12 14.76 -3 -6.26

At this point, we can test each variable with a one-sample t-test. The squares
of these t values would be identical to F tests if the contrasts were done with
software that provides the hypothesis and specific error terms more directly (e.g.,
SPSS GLM or MANOVA). The “error term” here with these t-tests is specific
because it is the variation of the contrast across the 12 subjects, thus it is a
contrast x subject interaction term with the proper 11 df. It is just couched as
a standard error of the mean in the production of the t value.

It is interesting that by using the specific error term approach, one of the con-
trasts is significant, even though the corrected omnibus F test for the age factor
was not. This can easily happen with contrast partitioning when one contrast
absorbs most of the effect of the condition into its single df rather than having
it “diluted” by the 3 df omnibus term. And, since the error is “specific” it needs
no correction for non-sphericity.
t.test(trendcontrasts$linear,mu=0)

##
## One Sample t-test
##
## data: trendcontrasts$linear
## t = 2.2414, df = 11, p-value = 0.04659
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.1208294 13.2955785
## sample estimates:
## mean of x
## 6.708204
t.test(trendcontrasts$quadratic,mu=0)

##
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## One Sample t-test
##
## data: trendcontrasts$quadratic
## t = -0.46749, df = 11, p-value = 0.6493
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -5.708132 3.708132
## sample estimates:
## mean of x
## -1
t.test(trendcontrasts$cubic,mu=0)

##
## One Sample t-test
##
## data: trendcontrasts$cubic
## t = -2.7544e-15, df = 11, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -2.838875 2.838875
## sample estimates:
## mean of x
## -3.552714e-15

This approach is a bit simpler than the “mlmfit” approach in chapter 4. However,
expanding the logic to larger designs with more than one repeated factor, or
including between-group factors will not be as simple and direct.

9.1.5 Visualization of the trend contrasts
The trend pattern can be seen from the line graph created in the initial section
of this chapter. However, we can also draw bar graphs that depict the mean of
each of the new trend contrast variables that were created in the analyses just
performed in the preceding sections.

Following the same strategy as used in chapter 4, we first need to put the
trend contrasts data set into a long format using pivot_longer. The levels
of the contrast variable are also ordered so that they are the expected linear-
quadratic-cubic order.
trendlong <-
tidyr::pivot_longer(data=trendcontrasts,

cols=1:3,
names_to="contrast",
values_to="contrastvalue")

trendlong$contrast <- ordered(trendlong$contrast,
levels=c("linear", "quadratic", "cubic"))
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trendlong

## # A tibble: 36 x 2
## contrast contrastvalue
## <ord> <dbl>
## 1 linear 12.5
## 2 quadratic 12.0
## 3 cubic -6.26
## 4 linear 22.4
## 5 quadratic -4.00
## 6 cubic 0
## 7 linear 7.16
## 8 quadratic -5.00
## 9 cubic 3.13
## 10 linear 11.6
## # ... with 26 more rows

The summarySE function provides the summary data to be used in the ggplot
graph. The “contrastvalue” column is the set of means of the three contrasts.
summary.trend <- Rmisc::summarySE(trendlong,

measurevar="contrastvalue",
groupvars="contrast")

summary.trend

## contrast N contrastvalue sd se ci
## 1 linear 12 6.708204e+00 10.367782 2.992921 6.587375
## 2 quadratic 12 -1.000000e+00 7.410067 2.139102 4.708132
## 3 cubic 12 -3.552714e-15 4.468069 1.289820 2.838875

Now we can draw the bar graph. This plot uses CI’s, but standard errors of the
mean could also be used in the “geom_errorbar” argument. The use of the 95%
CI does give the visual consistency with the outcome of the one sample t-test on
this contrast since the CI does not overlap zero for the linear contrast, but the
CIs for the non-significant quadratic anad cubic components do overlap zero.
ptrend <- ggplot(summary.trend, aes(x=contrast, y=contrastvalue, fill=contrast)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=contrastvalue-ci, ymax=contrastvalue+ci), data=summary.trend,

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus 95% CI's for three Orthogonal Trend Components") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
ptrend
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9.1.6 Conclusion on Univariate approach to trend con-
trasts and specific error terms

Specific error terms will typically be important to use but this direct compu-
tational method is not the most efficient. It will be more challenging to use
this direct method for more complex designs - more repeated factors or mixed
designs with between-groups factors. It appears that there is no other way in
R to obtain these specific error term based tests.

We can also address conclusions on this analysis. The linear trend component
was the only one that was significant, using these standard NHST methods.
However, the size of the effect is not large. The mean is about .65 standard
deviations away from the null value of zero (see the summary.trend object above).
Although viewed as a effect size statistic (“d”), this value would be labeled
moderate or large. But if we think back to the original profile plot for this data
set, the pattern of increases was not clearly consistent for the twelve subjects
and some of them showed no increase across age. Only two of them showed the
clear linear pattern of increases from each measurement to the next. So what
are we to conclude? At this point all we can really say is that there is a modest
increase in scores across ages, one that was significant with NHST methods for
the linear trend component. But are we convinced? Perhaps not. It might be
nice to take a Bayesian perspective on the strength of the evidence. The next
section take a quick approach to that.
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9.1.7 Bayes Factor evaluation for trend.
Once construed as the single trend contrast variable in the previous section, the
linear trend variable was analyzed as a one-sample location test, the traditional
t-test. There is a very quick way to obtain a Bayes Factor for such one-sample
“t-test” applications. The BayesFactor package has a function that can ana-
lyze this one sample design and easily provide the Bayes Factor, for assessment
of strength of the evidence for the alternative hypothesis. In its default config-
uration the ttestBF function can provide the Bayes Factor, extracted from the
object with the extractBF function.
#library(BayesFactor)
BF10.mdktrendlinear <- extractBF(ttestBF(trendcontrasts$linear), onlybf = TRUE)
BF10.mdktrendlinear

## [1] 1.750326

This is a small BF10 value, indicating only weak evidence in support of the
alternative hypothesis (a linear trend). It contemplates the two tailed model,
but that is ok here since we would typically be interested in a two tailed test
with the traditional methods.

So we would probably not argue strenuously for a conclusion that McCarthy
scores increase linearly across time.

9.1.8 Linear Mixed Effects Modeling and Trend
A common alternative to the traditional univariate ANOVA performed above is
a linear mixed effects analysis of repeated measures data. Setting this analysis
up follows the approach oulined in chapter 5, and we will use the lme function
from the nlme package.

First, we can look at the covariance and correlation matrices for the four levels
of the repeated measure factor, using the wide format data frame. This is to
provide assistance in choosing the type of covariance structure to model with the
lme analysis. For time varying measurements, it is expected that the covariance
stucture follows a first order autoregressive pattern. That is, measurements
closer in time to one another are more strongly covarying. That is somewhat
the case for this data set, but the pattern is not perfect.
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cov(mdkwide[,2:5])

## thirty_months thirtysix_months fortytwo_months
## thirty_months 188.0000 154.36364 127.3636
## thirtysix_months 154.3636 200.54545 143.6364
## fortytwo_months 127.3636 143.63636 178.0000
## fortyeight_months 121.1818 97.45455 168.0909
## fortyeight_months
## thirty_months 121.18182
## thirtysix_months 97.45455
## fortytwo_months 168.09091
## fortyeight_months 218.00000
cor(mdkwide[,2:5])

## thirty_months thirtysix_months fortytwo_months
## thirty_months 1.0000000 0.7949863 0.6962361
## thirtysix_months 0.7949863 1.0000000 0.7602352
## fortytwo_months 0.6962361 0.7602352 1.0000000
## fortyeight_months 0.5985912 0.4660875 0.8533083
## fortyeight_months
## thirty_months 0.5985912
## thirtysix_months 0.4660875
## fortytwo_months 0.8533083
## fortyeight_months 1.0000000

The first and second models are designed to repeat the univariate ANOVA type
of approach. The first model is an intercept only model and the second is a
model that contains the age factor. But the second model assumes compound
symmetry (which is spherical), and we know this is not a supported assump-
tion (Mauchly test above and pattern of covariances). Nonetheless, this should
duplicate the univariate omnibus F test.
# intercept only model
mdk1.lme <- lme(DV ~ 1, random = ~1 | subject/age,

method = "ML", data=mdklong)
# Augmented Model with Compound symmetry cov matrix
mdk1a.lme <- lme(DV ~ age, random = ~1|subject,

correlation=corCompSymm(form=~1|subject),
#correlation=corSymm(form=~1|snum),
method = "ML", data=mdklong)

An ANOVA on the “mdk1a.lme” model verifies that the same F/p values are
obtained as for the traditional method, and the comparison of the full model
with the intercept only model verifies that the age model is a better fit, although
not convincingly since the BIC value is larger for the age model (AIC is smaller).
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anova(mdk1a.lme)

## numDF denDF F-value p-value
## (Intercept) 1 33 929.7391 <.0001
## age 3 33 3.0269 0.0432
anova(mdk1.lme, mdk1a.lme)

## Model df AIC BIC logLik Test L.Ratio p-value
## mdk1.lme 1 4 373.4653 380.9501 -182.7327
## mdk1a.lme 2 7 370.7143 383.8127 -178.3572 1 vs 2 8.750988 0.0328

The next model changes the covariance structure to AR1. When compared
to the compound symmetry model, both AIC and BIC are smaller, so AR1 is
preferred.
# Augmented Model with AR1 cov matrix
mdk1c.lme <- lme(DV ~ age, random = ~1|subject,

#correlation=corCompSymm(form=~1|subject),
correlation=corAR1(form=~1|subject),
method = "ML", data=mdklong)

anova(mdk1a.lme, mdk1c.lme)

## Model df AIC BIC logLik
## mdk1a.lme 1 7 370.7143 383.8127 -178.3572
## mdk1c.lme 2 7 362.3200 375.4184 -174.1600

Somewhat surprisingly, the anova on the AR1 model does not return a significant
effect of age. This reinforces the concerns we developed with the univariate
approach about the strength of the age effect.
anova(mdk1c.lme)

## numDF denDF F-value p-value
## (Intercept) 1 33 904.3556 <.0001
## age 3 33 1.9392 0.1424

Nonetheless, since at least the linear trend component was likely to be an a
priori hypothesis, we can attempt to evaluate the trend components with the
glht function. The trend contrasts were created wtih the whole number pattern
of coefficients that is appropriate for equally spaced factor levels.

As was the case in chapter 5, we note that the tests provided by glhtare z tests
and thus approximations, as are the p values. Here we find some support for a
linear trend.
trendcontrasts2<- rbind("linear" = c(-3,-1,1,3),

"quadratic" = c(1,-1,-1,1),
"cubic" = c(1,-3,3,-1))

trendcontrasts.lmm <- glht(mdk1c.lme, linfct = mcp(age = trendcontrasts2))
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summary(trendcontrasts.lmm)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: lme.formula(fixed = DV ~ age, data = mdklong, random = ~1 | subject,
## correlation = corAR1(form = ~1 | subject), method = "ML")
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## linear == 0 3.000e+01 1.236e+01 2.428 0.0448 *
## quadratic == 0 -2.000e+00 3.595e+00 -0.556 0.9241
## cubic == 0 -1.498e-14 6.356e+00 0.000 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

9.1.9 General conclusion regarding trend for the Age fac-
tor.

The inconsistent pattern of evidence in support of a linear increase in scores
across age is not an unusual or surprising outcome. The real answer here is that
the linear increase is inconsistent across this set of 12 subjects. A larger sample
size would likely have led to a more clear conclusion. This is an interesting
message, that even with an N of 12 in a repeated measures design, evidence
for weak or modest effects is difficult. The reader should once again refer to
the profile plot to see why this is a reasonable outcome and conclusion. The
subjects are simply not consistently showing any specific shape of change across
time, and some are not even increasing. The aggregate is largely linear and
enough so to produce significance with a traditional NHST test.

One caution is not to place too much emphasis on what this example says for
the illustration regarding McCarthy scores. The data set is a hypothetical data
set and we saw some patterns in it that made it clear that it was a textbook
example where the data were likely created by the author rather than real data.
For example it is curious that the mean value for the quadratic trend variable
was exactly 1.0, and that the covariance matrix was not more clearly AR1. The
primary message here is in the code sequence, not the outcome for this particular
hypothesized study.
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9.2 A Pre-Post design
Another primary use of repeated measures designs is in the so-called Pre-post
design. One or more baseline measurements are made of the outcome variable
and a treatment is then applied and perhaps continued. Later measures after
the treatment (post) are then taken. The design could be as simple as one “Pre”
measurement and one “Post” measurement and that repeated measures design
analysis via traditional NHST would be the same as a dependent samples t-test.
But additional pre-treatment or post-treament measurements might also occur.

An illustration of this design is provided by the Howell (2013) textbook with
the data in table 14.3. A study by Blanchard and colleagues (“Temperature
biofeedback in the treatment of migraine headache”. Archives of General Psy-
chiatry, 35:581-588, 1978) evaluated the impact of migraine headache occurrence
in patients prior to or after the administration of a treatment regimen involving
temperature biofeedback. There were four baseline weeks prior to treatment
and six weeks after treatment. Howell presents data for the last two baseline
weeks and the final three weeks after treatment began, thus the repeated mea-
sure factor has five levels. Howell did not provide the original data, but rather,
simulated the outcome reported in the Blanchard paper. In research studies
such as this, there might be expected to be a control group that was similarly
measured, but did not receive treatment. That would comprise a so-called mixed
design, with the treatment group factor being a between-groups factor and the
repeated testing the repeated measure factor. In this analysis in the Howell
text, and here, only the treatment group is shown since the Howell chapter and
this chapter are on one-factor repeated measure designs.

This illustration is included here because we will see how the design provides a
nice example of why the omnibus F test is often not very interesting. Instead,
the primary rationale for the study and the hypotheses of interest, are better
couched as contrasts.

9.2.1 Import the data and perform EDA
The data set imported here is not the exact data set that the Howell textbook
provides. I have altered a few pieces of the data to better simulate what might
be reasonably expected covariances among the pairs of the five levels of the re-
peated measure factor. The dependent variable is an index of headache severity
comprised from a combination frequency and duration records. The initial data
set is in a .csv file.
howell14.3wide <- read.csv("data/howell_tab14-3wideb.csv")
knitr::kable(howell14.3wide)
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Subject baseline1 baseline2 training1 training2 training3
1 21 22 8 6 5
2 20 19 10 4 3
3 17 15 8 4 4
4 25 30 13 12 10
5 30 27 13 8 5
6 19 27 8 7 3
7 26 16 7 2 3
8 17 18 8 1 2
9 26 24 14 8 6

Much of the work with the data set here will require a long format version of the
data set, so pivot_longer is used to convert from wide to long. In addition the
Subject variable and the time variable (week of measurement) are specified as
factors, rather than numeric variables. And then the order of the time variable
is specified in the sequential order that it existed in during the study. Often
this last step is necessary because R orders factors alphabetically by default.
But in our example the specific reordering was unnecessary because the original
variable names (which became the factor levels in the long format data frame)
were already properly ordered. So this last specification is placed here as a
reminder if this code is used as a template for other situations
howell14.3long <-
tidyr::pivot_longer(data=howell14.3wide,

cols=2:6,
names_to="time",
values_to="DV")

howell14.3long$Subject <- as.factor(howell14.3long$Subject)
howell14.3long$time <- as.factor(howell14.3long$time)
howell14.3long$time <- ordered(howell14.3long$time,

levels=c("baseline1", "baseline2", "training1", "training2", "training3"))

Examination of a few lines of the the long format data frame shows the new
structure:
psych::headTail(howell14.3long)

## Subject time DV
## 1 1 baseline1 21
## 2 1 baseline2 22
## 3 1 training1 8
## 4 1 training2 6
## 5 <NA> <NA> ...
## 6 9 baseline2 24
## 7 9 training1 14
## 8 9 training2 8
## 9 9 training3 6
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One additional configuration of the data frame is needed. In order to plot the
data with an X axis that reflects the successive weeks of the study, we need a
numeric variable to code for week. Since the current time variable is a factor, its
use on the x axis of a plot will not produce the proper spacing of measurements
at weeks 1, 2 (baseline), and 6, 7, 8, (training weeks). So, a numeric time
variable is needed:
howell14.3long$timenumeric <- dplyr::recode(
howell14.3long$time,
"baseline1" = 1,
"baseline2" = 2,
"training1" = 6,
"training2" = 7,
"training3" = 8

)
psych::headTail(howell14.3long)

## Subject time DV timenumeric
## 1 1 baseline1 21 1
## 2 1 baseline2 22 2
## 3 1 training1 8 6
## 4 1 training2 6 7
## 5 <NA> <NA> ... ...
## 6 9 baseline2 24 2
## 7 9 training1 14 6
## 8 9 training2 8 7
## 9 9 training3 6 8

Descriptive statistics can quickly be obtained with the summarySE function in
the Rmisc package. The “ci” variable found in the data framed produced by
summarySE is the distance up and down from the mean to produce the full CI
(95% here). Work in chapter 2 of this document might suggest that a different
computation of standard error should be done,reflecting the standard error and
the ci for purposes of plotting the repeated measures design, but the ensuing
graphs do not plot error bars, so it is unnecessary. summarySE is used here
in order to obtain the means associated with the numerically- coded “week”
variable.
summary.h143 <- Rmisc::summarySE(howell14.3long,

measurevar="DV",
groupvars="timenumeric",
conf.interval=.95)

knitr::kable(summary.h143)
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timenumeric N DV sd se ci
1 9 22.333333 4.582576 1.5275252 3.522480
2 9 22.000000 5.338539 1.7795130 4.103564
6 9 9.888889 2.713137 0.9043789 2.085501
7 9 5.777778 3.419714 1.1399047 2.628625
8 9 4.555556 2.403701 0.8012336 1.847648

The first plot is a line graph of the week by week means of the DV. Raw data
points are also plotted to provide a sense of dispersion. The ggplot axis coor-
dinates are determined with the numerically coded time variable in the initial
aesthetic and that is found in use of the summarized data frame. But the raw
data points come from the full long-formate data frame, which also has the
numerically coded time variable. The line geom uses the summary data frame
and the y axis specification from the summary data frame is the means. So be
careful in reading the code. In the first geom (jitter), y=DV refers to individual
data points, but in the line geom and the second point geom, y=DV refers to
the means from the summary data frame. The x axis labels are changed from
the original numeric codes of “timenumeric” to the labels that describe the
exact week/condition and this is accomplished with the “scale_x_continuous”
phrasing. Other attributes of the graph are created with more self explanatory
options. Finally, notice that the plot of the raw data points uses geom_jitter
instead of geom_point in order to counter the fact that multiple data points
are drawn at the same position, obscuring the individual points if one uses
geom_point.
pp1 <- ggplot(data=summary.h143, aes(x=timenumeric, y=DV)) +
geom_jitter(data=howell14.3long, aes(x=timenumeric, y=DV),

width=.1) +
geom_line(data=summary.h143, aes(x=timenumeric, y=DV)) +
geom_point(data=summary.h143,aes(x=timenumeric, y=DV),color="blue", size=4) +
ylab("Headache Score") +
xlab("Week") +
ggtitle("Mean Scores as a function of Week Plus Raw Data Points") +
scale_x_continuous(breaks=c(1,2,6,7,8),

labels = c("baseline1","baseline2", "training4", "training5", "training6")) +
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
pp1
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A profile plot provides information on how the individual cases respond across
the measurement times. There is considerable consistency across subjects in
that they all report diiminished headache severity by the fourth week of training,
relative to their own baseline values.
p2 <- ggplot(howell14.3long, aes(timenumeric, DV, colour=Subject)) +
geom_point(size = 2.5) +
geom_line(aes(group = Subject), size = 1) +
scale_x_continuous(breaks=c(1,2,6,7,8),

labels = c("baseline1","baseline2", "training4", "training5", "training6")) +
xlab("Week") +
ylab("Headache Score") +
scale_colour_grey() +
ggtitle("Profile Plot of Score by Subject") +
theme_minimal() +
theme(legend.position = "none") + # removes legend
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
p2
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9.2.2 The omnibus analysis: Why?
In this section, the omnibus ANOVA is performed, and the 4 df effect of time
was significant. But this is a fairly uninteresting outcome. There are just too
many different patterns of outcome that would give rise to a significant F test
with five conditions. The study design clearly indicated a few likely a priori
contrasts that will be evaluated below. One can justify an assertion that the
omnibus F test here is neither required nor useful - should we proceed directly
to assessment of the a priori contrasts?

Perhaps not. There is some value in examining the degree to which the sphericity
assumption is violated. If it appears to not be violated, then one might argue
that use of the omnibus A x s error term would be appropriate for the contrasts
instead of the specific error term approach advocated in earlier sections and
that is performed here. If sphericity holds, then the most efficient method of
performing contrast analysis would be with the functions from the emmeans
package as seen in chapter 4. But for this data set, we can see here that the
GG and HF episilons are both well below 1.0, even though they are also above
the lower bound value of .25 for this five condition design. So the information
produced by the afex package approach is not completely useless.
contrasts(howell14.3long$time) <- contr.sum
fit1.h143 <- afex::aov_car(DV ~ time + Error(Subject/time), data=howell14.3long,

anova_table = list(correction = "GG", es="ges"))
summary(fit1.h143)
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##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 7501.4 1 395.64 8 151.68 1.758e-06 ***
## time 2711.0 4 199.02 32 108.97 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## time 0.062965 0.044182
##
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## time 0.56457 4.233e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## time 0.797857 6.836594e-15

9.2.3 Building contrasts
With the need for specific error terms established, this section creates those
contrasts individually for each subject/case rather than using an approach that
applies the trend coefficients to the condition means. This is the same approach
seen in chapter 4 and for trend analysis in the initial part of this chapter.

The coefficient set creates four orthogonal contrasts that might each be argued
to be a priori contrasts. The first evaluates whether the average of the three
training week conditions differ from the average of the two baseline conditions,
and this may be the primary a priori hypothesis around which the study was
designed. The second contrast hypotheses that scores at training week four may
not have reached to lowest headache severity levels that the last two weeks did
and so compares that week four to the average of weeks five and six. Comparison
of weeks five and six in the third contrast evaluates the hypothesis that no
further drop occurs after week 5. Finally the fourh contrast which compares
the two baseline conditions evaluates whether baseline scores are stable in these
last two measurements of pre-training.

The contrasts are created as a matrix of coefficients. where each contrast will be
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a column in the matrix that is produced (but note that the vectors are in rows of
the code that creates them). The exact values of the coefficients were chosen so
that the scale reflects the questions posed by each of the above hypotheses will
be accurately reflected in the values of the means of the new contrast vectors.
For example, the mean of the first contrast would be the exact difference in
the average of the first two measurements minus the average of the last three
measurements. Using weights of the first contrast as, for example, 3 ,3, -2, -2,
-2, would pose the same contrast question be the mean of the vector would be
larger - a scaling artifact.

Inferences would not depend on the exact values of the coefficients, but only the
signs/patterns - and also recall that any set of contrast weights has to sum to
zero.
contrasts.time <- matrix(c(1/2, 1/2, -1/3, -1/3, -1/3,

0, 0, 1, -1/2, -1/2,
0, 0, 0, 1, -1,
1, -1, 0, 0, 0), ncol=4)

If we wanted to orthonormalize the coefficients, this would be done with a
function from the far package. However this is not executed here and is only
included for completeness.
contrasts.time <- far::orthonormalization(contrasts.time)

Now we assign that coefficient matrix to the time variable in the long format
data frame.
contrasts(howell14.3long$time) <- contrasts.time
contrasts(howell14.3long$time)

## [,1] [,2] [,3] [,4]
## baseline1 0.5000000 0.0 0 1
## baseline2 0.5000000 0.0 0 -1
## training1 -0.3333333 1.0 0 0
## training2 -0.3333333 -0.5 1 0
## training3 -0.3333333 -0.5 -1 0

We can double check the orthogonality of the set by creating a correlation matrix
for all pairs of the four codign vectors and with the describe function, we see
that the coefficient values all sum to zero, as they should because their means
are zero.
psych::describe(contrasts(howell14.3long$time))

## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 5 0 0.46 -0.33 0 0.00 -0.33 0.5 0.83 0.29 -2.25 0.20
## X2 2 5 0 0.61 0.00 0 0.74 -0.50 1.0 1.50 0.65 -1.40 0.27
## X3 3 5 0 0.71 0.00 0 0.00 -1.00 1.0 2.00 0.00 -1.40 0.32
## X4 4 5 0 0.71 0.00 0 0.00 -1.00 1.0 2.00 0.00 -1.40 0.32
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cor(contrasts(howell14.3long$time))

## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1

Next, we use apply the coefficients to the data for each case. This is done
efficiently as a matrix operation. The wide format data frame is used, and
converted to a matrix with the as.matrix function. This wide format data
matrix is a 9x5 matrix. The contrast matrix, seen above, is a 5x4 matrix,
thus the matrices are conformable and the produce is the 9x4 matrix desired.
Each contrast is represented by nine values for the nine subjects. The four new
variables are formatted into a data frame, and the columns are named to reflect
the four orthogonal contrasts.
orthcontrasts <- as.matrix(howell14.3wide[,2:6])%*%contrasts(howell14.3long$time)
orthcontrasts <- as.data.frame(orthcontrasts)
colnames(orthcontrasts) <- c("orth1", "orth2", "orth3", "orth4")

headTail(orthcontrasts)

## orth1 orth2 orth3 orth4
## 1 15.17 2.5 1 -1
## 2 13.83 6.5 1 1
## 3 10.67 4 0 2
## 4 15.83 2 2 -5
## ... ... ... ... ...
## 6 17 3 4 -8
## 7 17 4.5 -1 10
## 8 13.83 6.5 -1 -1
## 9 15.67 7 2 2

Prior to analysis, (but post hoc since we also examined the data with
graphs/means), we might entertain one more contrast of interest. It might be
valuable to compare the final baseline measurement to the first training period
measurement (training week 4). If this were indeed a contrast chosen after
looking at the data we would classify it as a post hoc contrast.

It can be created as a five element vector.
postcontr1 <- as.matrix(c(0, 1, -1, 0, 0),nrow=5)
postcontr1

## [,1]
## [1,] 0
## [2,] 1
## [3,] -1
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## [4,] 0
## [5,] 0

Next, we use the familiar matrix multiplication operation to create a new con-
trast vector with a value for each case from the wide format data frame and we
call this data vector “posthoc1”. This time the wide data frame is converted to a
matrix within the same line of code as the matrix multiplication is accomplished.
posthoc1 <- as.matrix(howell14.3wide[,2:6])%*%postcontr1
posthoc1

## [,1]
## [1,] 14
## [2,] 9
## [3,] 7
## [4,] 17
## [5,] 14
## [6,] 19
## [7,] 9
## [8,] 10
## [9,] 10

Now we can bind the original matrix of the orthogonal contrast vectors with
this posthoc vector, producing a 9 x 5 matrix: Nine cases and five variables -
four planned orthogonal and one post hoc contrast
allcontrasts <- cbind(orthcontrasts,posthoc1)
knitr::kable(allcontrasts)

orth1 orth2 orth3 orth4 posthoc1
15.16667 2.5 1 -1 14
13.83333 6.5 1 1 9
10.66667 4.0 0 2 7
15.83333 2.0 2 -5 17
19.83333 6.5 3 3 14
17.00000 3.0 4 -8 19
17.00000 4.5 -1 10 9
13.83333 6.5 -1 -1 10
15.66667 7.0 2 2 10

###Evaluating the contrasts for the pre-post design.

Following the approach outlined above in chapter 4 and in the trend analysis
section of this chapter, we submit each of these new variables to a one-sample
t-test with a null hypothesis that the mean is zero. The results of these t-tests
would be identical to the F tests done a more traditional way that students
would have been familiar with from using the SPSS MANOVA procedure - the
squares of these t’s would be those F values.
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There is a question of alpha rate adjustment for multiple comparisons since we
have done five tests. It can be argued that the four planned orthogonal contrasts
can be tested at a nominal, non-adjusted, alpha level (.05), but the post hoc test
should have some adjustment applied. Since five tests were done, a bonferroni
adjustment would set the alph level at .01. This is why I chose the CI for the
post hoc contrast as a 99% CI and lef the orthogonal ones at their default 95%
values.
t1 <- t.test(allcontrasts$orth1, mu=0, alternative="two.sided")
t2 <- t.test(allcontrasts$orth2, mu=0, alternative="two.sided")
t3 <- t.test(allcontrasts$orth3, mu=0, alternative="two.sided")
t4 <- t.test(allcontrasts$orth4, mu=0, alternative="two.sided")
t5 <- t.test(allcontrasts$posthoc1, mu=0, alternative="two.sided", conf.level = .99)
t1

##
## One Sample t-test
##
## data: allcontrasts$orth1
## t = 18.083, df = 8, p-value = 8.979e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 13.45877 17.39308
## sample estimates:
## mean of x
## 15.42593
t2

##
## One Sample t-test
##
## data: allcontrasts$orth2
## t = 7.2488, df = 8, p-value = 8.815e-05
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.219984 6.224461
## sample estimates:
## mean of x
## 4.722222
t3

##
## One Sample t-test
##
## data: allcontrasts$orth3
## t = 2.1368, df = 8, p-value = 0.0651
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## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.09676476 2.54120920
## sample estimates:
## mean of x
## 1.222222
t4

##
## One Sample t-test
##
## data: allcontrasts$orth4
## t = 0.19612, df = 8, p-value = 0.8494
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -3.586120 4.252787
## sample estimates:
## mean of x
## 0.3333333
t5

##
## One Sample t-test
##
## data: allcontrasts$posthoc1
## t = 8.9147, df = 8, p-value = 1.987e-05
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 7.552624 16.669598
## sample estimates:
## mean of x
## 12.11111

An alternative way to do the multiple comparison adjustment is to submit the
set of p values to the p.adjust procedure and that is done here with the Holm
method, just illustrate the alternative possibilities for adjusted p values. It was
argued that the adjusted p value would only be needed for the final contrast
(the post hoc one), but all are included in case the adjustment is desired for
all of them and to provide the right number of tests for the Holm method to
operate on.

The final contrast is significant even with this Holm adjustment.
p.adjust(c(t1$p.value,t1$p.value,t2$p.value,

t3$p.value,t4$p.value,t5$p.value), method="holm")

## [1] 5.387577e-07 5.387577e-07 2.644635e-04 1.301942e-01 8.494094e-01
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## [6] 7.949708e-05

9.2.4 Visualization of the contrasts
Even though the comparisons of the five contrasts could be visualized from the
original line graph of this data set (and perhaps the profile plot), it can be
useful to plot the means of the five contrasts as a bar graph and add confidence
intervals based on the specific errors embodied in the variances of those five
variables.

First we need to convert the wide format data matrix of the five contrasts to a
long format.
contrastslong <-
tidyr::pivot_longer(data=allcontrasts,

cols=1:5,
names_to="contrast",
values_to="contrastvalue")

contrastslong$contrast <- ordered(contrastslong$contrast,
levels=c("orth1", "orth2", "orth3",

"orth4", "posthoc1"))
contrastslong

## # A tibble: 45 x 2
## contrast contrastvalue
## <ord> <dbl>
## 1 orth1 15.2
## 2 orth2 2.5
## 3 orth3 1
## 4 orth4 -1
## 5 posthoc1 14
## 6 orth1 13.8
## 7 orth2 6.5
## 8 orth3 1
## 9 orth4 1
## 10 posthoc1 9
## # ... with 35 more rows

Next, we once again use summarySE to extract the relevant summary information.
Note that I requested a 99% confidence interval even though the 95% interval
is probably appropriate for the four orthogonal contrasts. I have not sorted out
how to use ggplot to put a different CI on different bars of the same graph, so
I went with 99% for all here.
summary.allcontr <- Rmisc::summarySE(contrastslong,

measurevar="contrastvalue",
groupvars="contrast",
conf.interval=.99)
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summary.allcontr

## contrast N contrastvalue sd se ci
## 1 orth1 9 15.4259259 2.559176 0.8530587 2.862342
## 2 orth2 9 4.7222222 1.954340 0.6514466 2.185856
## 3 orth3 9 1.2222222 1.715938 0.5719795 1.919213
## 4 orth4 9 0.3333333 5.099020 1.6996732 5.703062
## 5 posthoc1 9 12.1111111 4.075673 1.3585577 4.558487

Now ggplot is used for the typical bar graph with confidence intervals overlaid
as “error bars”.
pall <- ggplot(summary.allcontr, aes(x=contrast, y=contrastvalue, fill=contrast)) +
geom_bar(position=position_dodge(), stat="identity", fill="gray") +
geom_errorbar(aes(ymin=contrastvalue-ci, ymax=contrastvalue+ci), data=summary.allcontr,

width=.2, # Width of the error bars
position=position_dodge(.9)) +

ggtitle("Means plus 99% CI's for four A Priori and one Posthoc Contrast") +
guides(fill=FALSE) + # removes legend
theme_minimal() +
theme(plot.title = element_text(size=10,

face = "bold", hjust = .5))
pall
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9.2.5 Bayes Factor values for the pre-post contrasts
The BayesFactor package provides a function (ttestBF) for doing a style of
Bayesian analysis that creates Bayes Factors for each test that is the one sample
t-test. Then we can use extractBF, from the same package, to find the BF10
value. BF10 is interpreted as the relative strength of evidence for support of the
alternative hypothesis and I used it for each of the contrasts that were significant
as a traditional t-test. All three had extremely large BF10 values, indicating
strong support for the alternative hypothesis against the null.
BF10.orth1 <- extractBF(ttestBF(allcontrasts$orth1), onlybf = TRUE)

## t is large; approximation invoked.
BF10.orth1

## [1] 116788.3
BF10.orth2 <- extractBF(ttestBF(allcontrasts$orth2), onlybf = TRUE)
BF10.orth2

## [1] 312.9519
BF10.posthoc1 <- extractBF(ttestBF(allcontrasts$posthoc1), onlybf = TRUE)
BF10.posthoc1

## [1] 1108.65

The contrasts that were not significant in the traditional t-tests are now charac-
terized with BF01 levels that indicate relative support for the null hypothesis.
BF01 is found as the reciprocal of BF10. The third orthogonal contrast led
to an inconclusive outcome. Nether BF01, nor BF10 were very far from zero,
indicating a situation where evidence for or against the null is weak. The fourth
orthogonal contrast produced a modest sized BF01, indicated weak to moderate
suppport for the null
BF01.orth3 <- 1/extractBF(ttestBF(allcontrasts$orth3), onlybf = TRUE)
BF01.orth3

## [1] 0.6670013
BF01.orth4 <- 1/extractBF(ttestBF(allcontrasts$orth4), onlybf = TRUE)
BF01.orth4

## [1] 3.058797

In this section, I am implying that supplementing the traditional NHST method
with the Bayes Factor score results in a more full characterization of the data
and does not require choosing sides in the Frequentist/Bayesian debate. Both
sets of information are helpful in describing the results of the study.
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Chapter 10

Reproducibility and history

Version 1.4 April 25, 2023 Added several changes to contrast section incorporat-
ing updated capability of the emmeans package. Added much explanatory text.
Clarified wording in many sections. Corrected typos Added references

Version 1.3 Jan 18, 2021 Added several methods of drawing graphs with error
bars in chapter 2 and 4. Added a chapter on trend analysis and on Pre-post
designs. Refined wording in several sections.

Version 1.2 Dec 31, 2020 Separated section on contrast analysis to a separate
chapter. Refined the section on using afex in chapter 3 Edited style/grammar
in several sections.

Version 1.1 Nov, 2020 Edited style and grammar

Version 1.0 August, 2020
sessionInfo()

## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## attached base packages:
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## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] WRS2_1.1-4 tidyr_1.2.1 sjstats_0.18.2
## [4] sciplot_1.2-0 Rmisc_1.5.1 lattice_0.20-45
## [7] rmarkdown_2.19 psych_2.2.9 plyr_1.8.8
## [10] phia_0.2-1 permuco_1.1.2 nortest_1.0-4
## [13] nlme_3.1-161 multcomp_1.4-20 TH.data_1.1-1
## [16] MASS_7.3-58.1 survival_3.5-0 mvtnorm_1.1-3
## [19] knitr_1.41 kableExtra_1.3.4 gt_0.8.0
## [22] granova_2.1 ggthemes_4.2.4 ggplot2_3.4.0
## [25] foreign_0.8-84 ez_4.4-0 emmeans_1.8.3
## [28] car_3.1-1 carData_3.0-5 BayesFactor_0.9.12-4.4
## [31] coda_0.19-4 afex_1.2-1 lme4_1.1-31
## [34] Matrix_1.5-3
##
## loaded via a namespace (and not attached):
## [1] insight_0.18.8 webshot_0.5.4 httr_1.4.4
## [4] numDeriv_2016.8-1.1 backports_1.4.1 tools_4.2.2
## [7] sjlabelled_1.2.0 utf8_1.2.2 R6_2.5.1
## [10] DBI_1.1.3 mgcv_1.8-41 colorspace_2.0-3
## [13] permute_0.9-7 withr_2.5.0 tidyselect_1.2.0
## [16] mnormt_2.1.1 compiler_4.2.2 performance_0.10.2
## [19] cli_3.6.0 rvest_1.0.3 xml2_1.3.3
## [22] sandwich_3.0-2 labeling_0.4.2 bookdown_0.31
## [25] bayestestR_0.13.0 scales_1.2.1 mc2d_0.1-22
## [28] pbapply_1.7-0 systemfonts_1.0.4 stringr_1.5.0
## [31] digest_0.6.31 minqa_1.2.5 svglite_2.1.1
## [34] pkgconfig_2.0.3 htmltools_0.5.4 highr_0.10
## [37] fastmap_1.1.0 rlang_1.0.6 rstudioapi_0.14
## [40] farver_2.1.1 generics_0.1.3 zoo_1.8-11
## [43] dplyr_1.0.10 magrittr_2.0.3 Rcpp_1.0.9
## [46] munsell_0.5.0 fansi_1.0.3 abind_1.4-5
## [49] lifecycle_1.0.3 stringi_1.7.12 yaml_2.3.6
## [52] grid_4.2.2 parallel_4.2.2 sjmisc_2.8.9
## [55] splines_4.2.2 pillar_1.8.1 boot_1.3-28.1
## [58] estimability_1.4.1 reshape2_1.4.4 codetools_0.2-18
## [61] glue_1.6.2 evaluate_0.19 modelr_0.1.10
## [64] vctrs_0.5.1 nloptr_2.0.3 MatrixModels_0.5-1
## [67] gtable_0.3.1 purrr_1.0.1 reshape_0.8.9
## [70] assertthat_0.2.1 datawizard_0.6.5 xfun_0.36
## [73] xtable_1.8-4 broom_1.0.2 viridisLite_0.4.1
## [76] tibble_3.1.8 lmerTest_3.1-3 ellipsis_0.3.2
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