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1 Introduction

Mice were treated with one of seven doses of cocaine. Cocaine, as a stimulant drug, is ex-
pected to produce increases in activity levels. Mice were measured in an automated activity
monitoring apparatus for 30 min. The primary outcome variable examined here is simply total
distance traveled.

Two closely related mouse strains were tested. The working hypothesis is that any differences
observed in cocaine response between the two strains might be due to a very small number of
mutations differentiating the two strains in the short amount of generational time that their
lineages were separated.

This template document demonstrates only a few of the 2-way ANOVA basics about executing
trend analysis in a 2 factor design.

Several Packages are used:

library(gt)
library(psych)
library(emmeans)
library(phia)
library(ggplot2)
library(ggthemes)
library(Rmisc)
library(sjstats)
library(afex)

2 Import and Manage Data

Read the data:

data1 <- read.csv("mousecoc_small.csv", stringsAsFactors=TRUE)
gt::gt(psych::headTail(data1))

snum cdist30 dose strain
1 3288 control(0) B6J
2 4076 5mg/kg B6J
3 24130 5mg/kg BR
4 39543 15mg/kg BR
... ... NA NA
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294 13490 15mg/kg B6J
295 7961 control(0) BR
296 33977 30mg/kg BR
297 8892 control(0) BR

First, I will change the levels of the dose variable to the proper order, not alphabetical (initially
examine the levels in the order they exist after the data frame is first created.) This is important
both for graphing purposes and for the use of orthogonal polynomial contrasts.

levels(data1$dose)

[1] "10mg/kg" "15mg/kg" "20mg/kg" "25mg/kg" "30mg/kg"
[6] "5mg/kg" "control(0)"

data1$dose<- ordered(data1$dose,
levels=c("control(0)","5mg/kg","10mg/kg","15mg/kg","20mg/kg",

"25mg/kg","30mg/kg"))
levels(data1$dose)

[1] "control(0)" "5mg/kg" "10mg/kg" "15mg/kg" "20mg/kg"
[6] "25mg/kg" "30mg/kg"

In order to properly draw a line graph, a new variable must be created for dose, since an X
axis variable on a plot needs to be numeric to be properly spaced.

data1[which(data1$dose == "control(0)"),"cocainedose"] <- 0
data1[which(data1$dose == "5mg/kg"),"cocainedose"] <- 5
data1[which(data1$dose == "10mg/kg"),"cocainedose"] <- 10
data1[which(data1$dose == "15mg/kg"),"cocainedose"] <- 15
data1[which(data1$dose == "20mg/kg"),"cocainedose"] <- 20
data1[which(data1$dose == "25mg/kg"),"cocainedose"] <- 25
data1[which(data1$dose == "30mg/kg"),"cocainedose"] <- 30
class(data1$cocainedose)

[1] "numeric"
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3 Graph of the dose response curves

A line graph drawn with ggplot requires a data frame that has the summary statistics for
each group. ggplot won’t work directly on the data frame for this kind of plot. So, first,
create the summary data frame.

mouse_summ <- Rmisc::summarySE(data1,measurevar="cdist30", groupvars=c("cocainedose","strain"))
#str(mouse_summ)
# rename the column that contains the mean to something less confusing
colnames(mouse_summ) <- c("cocainedose", "strain","N", "mean", "sd", "se", "95%ci" )
gt::gt(mouse_summ)

cocainedose strain N mean sd se 95%ci
0 B6J 21 2803.762 1020.190 222.6238 464.3850
0 BR 17 7127.647 1984.033 481.1986 1020.0954
5 B6J 24 5280.750 2083.401 425.2724 879.7431
5 BR 18 18022.833 6436.944 1517.2022 3201.0168
10 B6J 24 10985.333 5375.119 1097.1915 2269.7136
10 BR 20 25515.450 8577.518 1917.9914 4014.4022
15 B6J 26 13662.269 6665.400 1307.1924 2692.2132
15 BR 18 30115.833 10513.587 2478.0762 5228.2838
20 B6J 25 17213.080 7292.433 1458.4865 3010.1682
20 BR 18 35342.222 10674.949 2516.1096 5308.5272
25 B6J 27 17931.370 8173.143 1572.9221 3233.1876
25 BR 18 37200.000 10678.226 2516.8821 5310.1571
30 B6J 24 19287.083 9059.427 1849.2479 3825.4607
30 BR 17 35642.765 10580.484 2566.1442 5439.9827

ggplot(mouse_summ, aes(x=cocainedose, y=mean, group=strain)) +
geom_line(aes(linetype=strain)) +
geom_point(aes(shape=strain),size=3) +
geom_errorbar(aes(ymin=mean-se, ymax=mean+se), colour="black", width=1)+
xlab("Cocaine Dose (mg/kg)")+
ylab("Mean Distance Traveled (cm)")+
ggtitle("Cocaine Effects on Mouse Activity")+
theme_classic()+
theme(text = element_text(size=16))
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4 Perform the Omnibus ANOVA

In factorial designs it becomes very important to understand coding schemes and set the correct
contrast sets. One particular issue here is that when the dose factor was changed above to an
ordered factor, its contrasts were automatically set to orthogonal polynomials (this is an R
“feature”).

#|results: hold
class(data1$dose)

[1] "ordered" "factor"

gt::gt(round(as.data.frame(contrasts(data1$dose)),4))

.L .Q .C ^4 ^5 ^6
-0.5669 0.5455 -0.4082 0.2417 -0.1091 0.0329
-0.3780 0.0000 0.4082 -0.5641 0.4364 -0.1974
-0.1890 -0.3273 0.4082 0.0806 -0.5455 0.4935
0.0000 -0.4364 0.0000 0.4835 0.0000 -0.6580
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0.1890 -0.3273 -0.4082 0.0806 0.5455 0.4935
0.3780 0.0000 -0.4082 -0.5641 -0.4364 -0.1974
0.5669 0.5455 0.4082 0.2417 0.1091 0.0329

The change to orthogonal contrasts for dose is ok, in the context of producing the omnibus F
table, but there is an issue if the second factor is left at its default dummy (treatment coding).
The Omnibus model would be flawed. So the strain variable should also be switched to an
analytical contrast in order to produce an overall design matrix that produces the correct
results.

#look at default contrast for strain
contrasts(data1$strain)

BR
B6J 0
BR 1

#change coding for strain to an analytical contrast
straincontrast <- cbind(strain=c(1,-1))
contrasts(data1$strain) <- straincontrast
gt::gt(round(as.data.frame(contrasts(data1$strain)),1))

strain
1
-1

Since the sample sizes were unequal, Type III SS is requested for testing the omnibus effects.
We find that the interaction results in rejection of the null hypothesis and therefore understand
the need for examination of simple effects, and contrasts.

fit1.aov <- aov(cdist30~dose*strain, data=data1)
car::Anova(fit1.aov, type="III")

Anova Table (Type III tests)

Response: cdist30
Sum Sq Df F value Pr(>F)

(Intercept) 1.1246e+11 1 1927.9867 < 2.2e-16 ***
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dose 1.7986e+10 6 51.3908 < 2.2e-16 ***
strain 1.5286e+10 1 262.0581 < 2.2e-16 ***
dose:strain 1.4597e+09 6 4.1706 0.0004908 ***
Residuals 1.6508e+10 283
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effect sizes on the omnibus effect are obtained here:

# the gt function permits nicer formatting of the table
# anova_stats(fit_base.aov)
gt(anova_stats(fit1.aov)[1:3,1:6],rownames_to_stub = T)

etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f
dose 0.325 0.496 0.318 0.478 0.318 0.992
strain 0.314 0.487 0.313 0.474 0.313 0.975
dose:strain 0.029 0.081 0.022 0.060 0.022 0.297

Another way to perform the ANOVA is with AFEX which provides the ges effect size. Note
that aov_car changes contrasts to effect coding but this is not permanent for the two factors
- it is just internal to the aov_car modeling.

fit_base.afex <- aov_car(cdist30~dose*strain + Error(1|snum), type=3, observed="strain", data=data1)

Contrasts set to contr.sum for the following variables: dose, strain

gt::gt(nice(fit_base.afex))

Effect df MSE F ges p.value
dose 6, 283 58331494.02 51.39 *** .351 <.001
strain 1, 283 58331494.02 262.06 *** .460 <.001
dose:strain 6, 283 58331494.02 4.17 *** .044 <.001
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5 Trend analysis for omnibus effects

First, use aov to refit the model employing the trend coefficient vectors, which are set for the
“dose” factor here.

Although the contrasts for dose and strain were set to our desired orthogonal contrasts, it is
useful to repeat the process here to ensure that they are in place (since other analyses were
done in between). Since strain is only a two-level factor it could be set to contr.sum, but
I manually created an orthogonal contrast (which would be equivalent to contr.sum for this
2-level factor). This is an important conceptual component of the analysis that would then
generalize to designs where the second independent variable has more than two levels.

# reset dose to orth polynomial coding
contrasts(data1$dose) <- contr.poly(7)
gt::gt(round(as.data.frame(contrasts(data1$dose)),4))

.L .Q .C ^4 ^5 ^6
-0.5669 0.5455 -0.4082 0.2417 -0.1091 0.0329
-0.3780 0.0000 0.4082 -0.5641 0.4364 -0.1974
-0.1890 -0.3273 0.4082 0.0806 -0.5455 0.4935
0.0000 -0.4364 0.0000 0.4835 0.0000 -0.6580
0.1890 -0.3273 -0.4082 0.0806 0.5455 0.4935
0.3780 0.0000 -0.4082 -0.5641 -0.4364 -0.1974
0.5669 0.5455 0.4082 0.2417 0.1091 0.0329

#reset strain to analytical contrast coding
straincontrast <- cbind(strain=c(1,-1))
contrasts(data1$strain) <- straincontrast
gt::gt(round(as.data.frame(contrasts(data1$strain)),1))

strain
1
-1

The same omnibus outcome is repeated here for the sake of completeness in this section.

trend1.aov <- aov(cdist30~dose*strain, data=data1)
car::Anova(trend1.aov,type=3)
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Anova Table (Type III tests)

Response: cdist30
Sum Sq Df F value Pr(>F)

(Intercept) 1.1246e+11 1 1927.9867 < 2.2e-16 ***
dose 1.7986e+10 6 51.3908 < 2.2e-16 ***
strain 1.5286e+10 1 262.0581 < 2.2e-16 ***
dose:strain 1.4597e+09 6 4.1706 0.0004908 ***
Residuals 1.6508e+10 283
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can’t use the “split” argument in anova since that would give us Type I SS. So, we use
summary.lm to obtain the tests of the individual vectors. Main effect contrasts on dose are
provided, as well as the six interaction contrast tests. Since strain is only a two-level factor
the test of its regression coefficient here is the same as for the omnibus model main effect

trendtests <- summary.lm(trend1.aov)
trendtests

Call:
aov(formula = cdist30 ~ dose * strain, data = data1)

Residuals:
Min 1Q Median 3Q Max

-29216.0 -2479.6 345.2 4407.7 17448.2

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 19723.6 449.2 43.909 < 2e-16 ***
dose.L 20287.8 1209.5 16.774 < 2e-16 ***
dose.Q -6436.0 1204.9 -5.342 1.90e-07 ***
dose.C -588.7 1191.4 -0.494 0.62161
dose^4 -110.2 1181.2 -0.093 0.92571
dose^5 -111.3 1172.9 -0.095 0.92447
dose^6 897.0 1170.2 0.766 0.44403
strainstrain -7271.7 449.2 -16.188 < 2e-16 ***
dose.L:strainstrain -4984.2 1209.5 -4.121 4.96e-05 ***
dose.Q:strainstrain 3294.8 1204.9 2.734 0.00664 **
dose.C:strainstrain -389.1 1191.4 -0.327 0.74421
dose^4:strainstrain 1235.2 1181.2 1.046 0.29662
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dose^5:strainstrain -213.9 1172.9 -0.182 0.85543
dose^6:strainstrain 173.8 1170.2 0.149 0.88203
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7638 on 283 degrees of freedom
Multiple R-squared: 0.6691, Adjusted R-squared: 0.6539
F-statistic: 44.01 on 13 and 283 DF, p-value: < 2.2e-16

But to make certain that the results are as expected, I have converted the t values to F values.
I need to extract the t values and square them. The resulting F’s match what we have seen
before in SPSS MANOVA and below with emmeans.

str(trendtests$coefficients)

num [1:14, 1:4] 19724 20288 -6436 -589 -110 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:14] "(Intercept)" "dose.L" "dose.Q" "dose.C" ...
..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"

teststats <- as.data.frame(trendtests$coefficients[2:14,3])
colnames(teststats) <- "tvalues"
teststats$Fvalues <- round(teststats$tvalues**2,4)
teststats$tvalues <- round(teststats$tvalues,4)
teststats

tvalues Fvalues
dose.L 16.7736 281.3522
dose.Q -5.3415 28.5319
dose.C -0.4941 0.2442
dose^4 -0.0933 0.0087
dose^5 -0.0949 0.0090
dose^6 0.7665 0.5875
strainstrain -16.1882 262.0581
dose.L:strainstrain -4.1208 16.9812
dose.Q:strainstrain 2.7345 7.4773
dose.C:strainstrain -0.3266 0.1067
dose^4:strainstrain 1.0456 1.0934
dose^5:strainstrain -0.1824 0.0333
dose^6:strainstrain 0.1485 0.0221
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6 Follow up with simple effects and contrasts using emmeans

Recall that emmeans provides capability for obtaining simple effects and contrasts on all
three multiple df effects: Main effect contrasts, Simple Main effect contrasts, and interaction
contrasts.

In the data set used here, the omnibus interaction was present, so we need to examine inter-
action contrasts, simple main effects, and simple main effect contrasts. But I will also show
how to obtain main effect contrasts as part of the template motivation for this document.

6.1 Interaction Contrasts with emmeans

This first section begins with the 2-way dose by strain interaction contrasts, duplicating the
outcome found with summary.lm above.

Initially, extract the grid of means from the fit object. emmeans does not require that the fit
object was created with orthogonal contrasts, but I’ve use the orthogonal contrast fit object
here.

factorial.emm <- emmeans::emmeans(trend1.aov, ~dose*strain)
factorial.emm

dose strain emmean SE df lower.CL upper.CL
control(0) B6J 2804 1670 283 -477 6084
5mg/kg B6J 5281 1560 283 2212 8349
10mg/kg B6J 10985 1560 283 7917 14054
15mg/kg B6J 13662 1500 283 10714 16611
20mg/kg B6J 17213 1530 283 14206 20220
25mg/kg B6J 17931 1470 283 15038 20825
30mg/kg B6J 19287 1560 283 16218 22356
control(0) BR 7128 1850 283 3481 10774
5mg/kg BR 18023 1800 283 14479 21566
10mg/kg BR 25515 1710 283 22154 28877
15mg/kg BR 30116 1800 283 26572 33659
20mg/kg BR 35342 1800 283 31799 38886
25mg/kg BR 37200 1800 283 33657 40743
30mg/kg BR 35643 1850 283 31997 39289

Confidence level used: 0.95

I’ve obtained the 2-way interaction contrasts in a different way that was demonstrated in the
larger 2-way factorial tutorial document using emmeans. This is a bit simpler.
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Caution: With this approach, implementing the “poly” argument assumes equal interval spac-
ing between the IV levels. If the spacing is not equal, then building a matrix of coefficients
and passing them would be required as shown in the larger 2-way factorial tutorial document.
(Addendum: R. Lenth has added another function in emmeans that provides coefficients when
the spacing of the quantitative IV levels is unequal. See the 3x5 tutorial document for expla-
nation.)

Use of the “consec” argument here is probably initially unclear. “Consec” does pairwise com-
parisons of successive pairs of groups. But with only two groups there is only one comparison:
one strain vs the other. But other contrasts could be used for designs when the second IV has
more than two levels. Each of these interaction contrasts can be thought of as Dose_trend by
Strain. The “consec” argument was a bit of a kludge to get ther.

contrast(factorial.emm, interaction=c(dose="poly",strain="consec"))

dose_poly strain_consec estimate SE df t.ratio p.value
linear BR - B6J 52748 12800 283 4.121 <.0001
quadratic BR - B6J -60394 22100 283 -2.734 0.0066
cubic BR - B6J 1906 5840 283 0.327 0.7442
quartic BR - B6J -30656 29300 283 -1.046 0.2966
degree 5 BR - B6J 3921 21500 283 0.182 0.8554
degree 6 BR - B6J -10567 71100 283 -0.149 0.8820

6.2 Main effect contrasts emmeans

Only the dose factor has more than one df, so it is the only one of the two main effects that
could be decomposed into contrasts.

First, extract the grid of marginal means to be used in the contrasts. Note that these are the
unweighted marginal means.

dose.emm <- emmeans::emmeans(trend1.aov, ~dose)

NOTE: Results may be misleading due to involvement in interactions

dose.emm

dose emmean SE df lower.CL upper.CL
control(0) 4966 1250 283 2513 7418
5mg/kg 11652 1190 283 9308 13996
10mg/kg 18250 1160 283 15975 20526
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15mg/kg 21889 1170 283 19584 24194
20mg/kg 26278 1180 283 23954 28601
25mg/kg 27566 1160 283 25278 29853
30mg/kg 27465 1210 283 25082 29848

Results are averaged over the levels of: strain
Confidence level used: 0.95

The contrast function provides an easy way to simply request orthogonal polynomials on the
dose factor.

Caution: I believe that with this approach, implementing the “poly” argument assumes equal
interval spacing between the IV levels. If the spacing is not equal, then building a matrix of
coefficients and passing them would be required as shown in the larger 2-way factorial tutorial
document.

emmeans::contrast(dose.emm, "poly")

contrast estimate SE df t.ratio p.value
linear 107353 6400 283 16.774 <.0001
quadratic -58987 11000 283 -5.342 <.0001
cubic -1442 2920 283 -0.494 0.6216
quartic -1368 14700 283 -0.093 0.9257
degree 5 -1020 10700 283 -0.095 0.9245
degree 6 27265 35600 283 0.766 0.4440

Results are averaged over the levels of: strain

6.3 Simple Main Effects of Dose emmeans

Dose effects at levels of strain can be found by creating the emmeans object using the
by="strain" argument. Dose is the factor of interest, and the grid of descriptive stats gives
the means for dose separated into two tables, one for each strain.

d.s.emm <- emmeans::emmeans(trend1.aov, "dose", by="strain")
d.s.emm

strain = B6J:
dose emmean SE df lower.CL upper.CL
control(0) 2804 1670 283 -477 6084
5mg/kg 5281 1560 283 2212 8349
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10mg/kg 10985 1560 283 7917 14054
15mg/kg 13662 1500 283 10714 16611
20mg/kg 17213 1530 283 14206 20220
25mg/kg 17931 1470 283 15038 20825
30mg/kg 19287 1560 283 16218 22356

strain = BR:
dose emmean SE df lower.CL upper.CL
control(0) 7128 1850 283 3481 10774
5mg/kg 18023 1800 283 14479 21566
10mg/kg 25515 1710 283 22154 28877
15mg/kg 30116 1800 283 26572 33659
20mg/kg 35342 1800 283 31799 38886
25mg/kg 37200 1800 283 33657 40743
30mg/kg 35643 1850 283 31997 39289

Confidence level used: 0.95

With a non-obvious syntactical structure we then obtain tests of the two simple main effects.
This combined use of the test and contrast functions produce the expected 6df simple main
effects of dose at each of the two strains, and the denominator df indicate that the Omnibus
MSwg error term is being used. The “d” note can be ignored as it is generated with the use of
the “eff” argument in a manner that won’t be addressed here. The “joint” argument essentially
means that the underlying contrasts for each effect are being jointly combined to obtain the
more “omnibus” 6df simple main effects.

emmeans::test(emmeans::contrast(d.s.emm, "eff"), joint=TRUE)

strain df1 df2 F.ratio p.value note
B6J 6 283 16.461 <.0001 d
BR 6 283 36.509 <.0001 d

d: df1 reduced due to linear dependence

6.4 Simple Main Effect Contrasts emmeans

Now, we can break down the SME of dose into their trend components, separately at each
level of strain

The same grid that we used to obtain the SME can be passed to the emmeans contrast
function with the “poly” specification. It is implied that the trend vectors will be applied to
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the “dose” factor since that is how the grid is created. The squares of these t values match the
F values we obtained in other approaches to this question in SPSS, and the omnibus MSwg
error term was used for each, appropriately so (seen with the df specification for each t value)

contrast(d.s.emm, "poly")

strain = B6J:
contrast estimate SE df t.ratio p.value
linear 80979 8370 283 9.679 <.0001
quadratic -28790 14500 283 -1.992 0.0474
cubic -2395 3820 283 -0.628 0.5308
quartic 13960 18900 283 0.738 0.4608
degree 5 -2980 14100 283 -0.212 0.8323
degree 6 32549 46300 283 0.704 0.4822

strain = BR:
contrast estimate SE df t.ratio p.value
linear 133726 9690 283 13.804 <.0001
quadratic -89184 16700 283 -5.341 <.0001
cubic -489 4420 283 -0.111 0.9119
quartic -16696 22400 283 -0.745 0.4569
degree 5 940 16300 283 0.058 0.9539
degree 6 21982 54100 283 0.407 0.6846

See: https://cran.r-project.org/web/packages/emmeans/vignettes/interactions.html#
contrasts for partial help on this coding approach.

7 Using phia for trend analysis in a 2x7 factorial

Some of the same effects extracted from use of emmeans will be obtained here, using phia.

Advantages:

• For many things, I find phia a bit easier to use
• It provides SS for effects so that effect sizes for contrasts might be manually computed.
• For Orthogonal Polynomials, it is simple to use coefficients that are appropriate for

unequally spaced intervals of the quantitative independent variable - the emmeans
approach to that is slightly more involved since it does not use contr.poly. See the 3x5
trend tutorial document for illustration of how to handle a quantitative IV with unequal
spacing of factor levels.

Disadvantages:
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• The way of handling contrasts can be a challenge when there are many of them. The
testInteractions function requires work on one contrast at a time and this slows us
down if there are many contrasts.

7.1 Interaction Contrasts with phia

In order to work with contrasts, testInteractions needs them submitted as a list rather than
as a numeric vector. I have done this by first, creating an object that has the coefficients. Note
that this is not associated with the dose factor in the data1 data frame. It is an independent
object at this point.

dosetrend <- contr.poly(7)
dosetrend

.L .Q .C ^4 ^5
[1,] -5.669467e-01 5.455447e-01 -4.082483e-01 0.2417469 -1.091089e-01
[2,] -3.779645e-01 9.690821e-17 4.082483e-01 -0.5640761 4.364358e-01
[3,] -1.889822e-01 -3.273268e-01 4.082483e-01 0.0805823 -5.455447e-01
[4,] 2.098124e-17 -4.364358e-01 4.532467e-17 0.4834938 5.342065e-16
[5,] 1.889822e-01 -3.273268e-01 -4.082483e-01 0.0805823 5.455447e-01
[6,] 3.779645e-01 0.000000e+00 -4.082483e-01 -0.5640761 -4.364358e-01
[7,] 5.669467e-01 5.455447e-01 4.082483e-01 0.2417469 1.091089e-01

^6
[1,] 0.03289758
[2,] -0.19738551
[3,] 0.49346377
[4,] -0.65795169
[5,] 0.49346377
[6,] -0.19738551
[7,] 0.03289758

Next, we can extract individual columns of trend coefficients and assign them to objects that
are lists. I did this for the linear and quadratic components since we are not going to be very
interested in the others for this data set - and it saves time/space in this template document.

doselin <- list(dose=dosetrend[,1])
doselin

$dose
[1] -5.669467e-01 -3.779645e-01 -1.889822e-01 2.098124e-17 1.889822e-01
[6] 3.779645e-01 5.669467e-01
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dosequad <- list(dose=dosetrend[,2])
dosequad

$dose
[1] 5.455447e-01 9.690821e-17 -3.273268e-01 -4.364358e-01 -3.273268e-01
[6] 0.000000e+00 5.455447e-01

Now, we can pass those two contrasts for dose to the testInteractions function and create
the interaction with strain by using the across argument.

This F test matches what we have seen above for the dose-linear by strain interaction con-
trast.

An important caveat:

In all of these phia tables the residual df and SS are placed in the wrong columns in the table
the df for residual should be 283 throughout and the SS is 1.6508e+10. A great example of
how one should know what to expect for df and not just trust the software. This is just an
outputting formatting error on the part of the programmer.

testInteractions(fit1.aov, custom=doselin, across="strain", adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
dose1 -9968.3 2419 1.0000e+00 990538222 16.981 4.963e-05 ***
Residuals 283 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analogously for the quadratic component - dose-quadratic by strain:

testInteractions(fit1.aov, custom=dosequad, across="strain", adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
dose1 6589.5 2409.8 1.0000e+00 436163702 7.4773 0.006642 **
Residuals 283.0 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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7.2 Simple Main Effects with phia

This approach provides an unwieldy table. It first gives all of the parameters/estimates of the
contrasts involved in the simple main effects before finally getting to the two 6-df simple main
effect F values and p values. These SME tests match what we found above with emmeans and
with SPSS.

Once again, note the incorrect placement of the df and SS for the residual term.

gt::gt(testInteractions(fit1.aov, across="dose", fixed="strain", adjustment="none"))

dose1 dose2 dose3 dose4 dose5 dose6 SE1 SE2 SE3 SE4 SE5 SE6 Df Sum of Sq F Pr(>F)
-16483.32 -14006.33 -8301.75 -5624.814 -2074.0033 -1355.713 2282.141 2.204758e+03 2204.758 2161.943 2182.599 2142.640 6 5761231986 16.46118 2.857703e-16
-28515.12 -17619.93 -10127.31 -5526.931 -300.5425 1557.235 2619.643 2.583003e+03 2519.492 2583.003 2583.003 2583.003 6 12777695321 36.50885 1.171692e-32

NA NA NA NA NA NA 283.000 1.650781e+10 NA NA NA NA NA NA NA NA

7.3 Simple Main Effect Contrasts with phia

By using the same “listed” contrast vectors from above, obtaining SME contrasts is a direct
outcome produced by passing those custom vectors and using the fixed argument to specify
the variable that is held at one level or the other for the two simple effects.

First, dose-linear at strain B6 and BR.

Once again, note the incorrect placement of the df and SS for the residual term.

testInteractions(fit1.aov, custom=doselin, fixed="strain", adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
B6J : dose1 15304 1581.2 1.0000e+00 5.4644e+09 93.679 < 2.2e-16 ***
BR : dose1 25272 1830.7 1.0000e+00 1.1115e+10 190.556 < 2.2e-16 ***
Residuals 283.0 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The dose-quadratic at those two levels of strain.

18



testInteractions(fit1.aov, custom=dosequad, fixed="strain", adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
B6J : dose1 -3141.3 1577.3 1.0000e+00 231364401 3.9664 0.04738 *
BR : dose1 -9730.8 1821.9 1.0000e+00 1663960050 28.5259 1.902e-07 ***
Residuals 283.0 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I am uncertain why testInteractions creates tables here with so many decimal places
for df (and the exponential notation) It would be possible to adjust that with use of the
gt tabling function since the output of the testInteractions function is a data frame
andgt‘ works on data frames or tibbles. E.g, …..

Once again, note the incorrect placement of the df and SS for the residual term.

# retesting the quadratic simple main effects
lin1 <- testInteractions(fit1.aov, custom=doselin, fixed="strain", adjustment="none")
str(lin1)

Classes 'anova' and 'data.frame': 3 obs. of 6 variables:
$ Value : num 15304 25272 NA
$ SE : num 1581 1831 283
$ Df : num 1.00 1.00 1.65e+10
$ Sum of Sq: num 5.46e+09 1.11e+10 NA
$ F : num 93.7 190.6 NA
$ Pr(>F) : num 2.52e-19 1.71e-33 NA
- attr(*, "heading")= chr "F Test: \nP-value adjustment method: none"

gt::gt(lin1)

Value SE Df Sum of Sq F Pr(>F)
15303.58 1581.149 1 5464417912 93.67869 2.518935e-19
25271.93 1830.740 1 11115430235 190.55624 1.713196e-33

NA 283.000 16507812807 NA NA NA
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7.4 Main Effect Contrasts with phia

This final analysis is possible by simply passing the custom dose contrast list and leaving out
any fixed or across arguments.

Once again, linear first:

testInteractions(fit1.aov, custom=doselin, adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
dose1 20288 1209.5 1.0000e+00 1.6412e+10 281.35 < 2.2e-16 ***
Residuals 283.0 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And then quadratic:

testInteractions(fit1.aov, custom=dosequad, adjustment="none")

F Test:
P-value adjustment method: none

Value SE Df Sum of Sq F Pr(>F)
dose1 -6436 1204.9 1.0000e+00 1664310946 28.532 1.896e-07 ***
Residuals 283.0 1.6508e+10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8 Conclusions

It is reassuring to see the convergence of test values produced by summary.lm the various
emmeans analyses, and the various testInteractions analyses. There is no obstacle in ob-
taining these full decompositons of the overall BG variation into omnibus, simple, and contrast
effects. There are some idiosyncracies of each methodology to keep aware of
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9 Caveat on comparison to SPSS

The student who assiduously compares values produced here to values found in our work with
SPSS MANOVA may notice some slight differences in F values for the six interaction contrasts
(and main effect contrasts) using the three different approaches here in R. The distinction is
that for one major analysis to produce interaction contrasts in SPSS MANOVA, my example
used the “singldf” approach to producing tests of contrasts. If that MANOVA work had not
used “singldf” and had instead named all contrasts individually on the design statement, then
the matching would have been perfect. The discrepancy is small, but something to be aware
of. The SPSS “singldf” method uses a combination Type I and III SS, but everything with
summary.lm, emmeans and testInteractions and contrasts here is based fully on Type III
SS.

10 Reproducibility

sessionInfo()

R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] afex_1.3-1 lme4_1.1-35.5 Matrix_1.7-0 sjstats_0.19.0
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[5] Rmisc_1.5.1 plyr_1.8.9 lattice_0.22-6 ggthemes_5.1.0
[9] ggplot2_3.5.1 phia_0.3-1 car_3.1-2 carData_3.0-5
[13] emmeans_1.11.0-001 psych_2.4.6.26 gt_0.11.0

loaded via a namespace (and not attached):
[1] gtable_0.3.5 bayestestR_0.14.0 xfun_0.46
[4] insight_0.20.2 numDeriv_2016.8-1.1 vctrs_0.6.5
[7] tools_4.4.2 generics_0.1.3 parallel_4.4.2
[10] datawizard_0.12.2 sandwich_3.1-0 tibble_3.2.1
[13] fansi_1.0.6 pkgconfig_2.0.3 lifecycle_1.0.4
[16] farver_2.1.2 compiler_4.4.2 stringr_1.5.1
[19] munsell_0.5.1 mnormt_2.1.1 codetools_0.2-20
[22] lmerTest_3.1-3 htmltools_0.5.8.1 yaml_2.3.10
[25] nloptr_2.1.1 pillar_1.9.0 MASS_7.3-61
[28] boot_1.3-30 abind_1.4-5 multcomp_1.4-26
[31] nlme_3.1-165 tidyselect_1.2.1 digest_0.6.36
[34] performance_0.12.2 mvtnorm_1.2-5 stringi_1.8.4
[37] reshape2_1.4.4 dplyr_1.1.4 purrr_1.0.2
[40] labeling_0.4.3 splines_4.4.2 fastmap_1.2.0
[43] grid_4.4.2 colorspace_2.1-1 cli_3.6.3
[46] magrittr_2.0.3 survival_3.7-0 utf8_1.2.4
[49] TH.data_1.1-2 withr_3.0.1 scales_1.3.0
[52] estimability_1.5.1 rmarkdown_2.27 zoo_1.8-12
[55] coda_0.19-4.1 evaluate_0.24.0 knitr_1.48
[58] parameters_0.22.1 rlang_1.1.4 Rcpp_1.0.13
[61] xtable_1.8-4 glue_1.7.0 xml2_1.3.6
[64] effectsize_0.8.9 minqa_1.2.7 rstudioapi_0.16.0
[67] jsonlite_1.8.8 R6_2.5.1
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