Chapter 10 Reproducibility and history

Version 1.4 April 25, 2023 Added several changes to contrast section incorporating updated capability of the emmeans package. Added much explanatory text. Clarified wording in many sections. Corrected typos Added references

Version 1.3 Jan 18, 2021 Added several methods of drawing graphs with error bars in chapter 2 and 4. Added a chapter on trend analysis and on Pre-post designs. Refined wording in several sections.

Version 1.2 Dec 31, 2020 Separated section on contrast analysis to a separate chapter. Refined the section on using afex in chapter 3 Edited style/grammar in several sections.

Version 1.1 Nov, 2020 Edited style and grammar

Version 1.0 August, 2020

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] WRS2_1.1-4             tidyr_1.2.1            sjstats_0.18.2        
##  [4] sciplot_1.2-0          Rmisc_1.5.1            lattice_0.20-45       
##  [7] rmarkdown_2.19         psych_2.2.9            plyr_1.8.8            
## [10] phia_0.2-1             permuco_1.1.2          nortest_1.0-4         
## [13] nlme_3.1-161           multcomp_1.4-20        TH.data_1.1-1         
## [16] MASS_7.3-58.1          survival_3.5-0         mvtnorm_1.1-3         
## [19] knitr_1.41             kableExtra_1.3.4       gt_0.8.0              
## [22] granova_2.1            ggthemes_4.2.4         ggplot2_3.4.0         
## [25] foreign_0.8-84         ez_4.4-0               emmeans_1.8.3         
## [28] car_3.1-1              carData_3.0-5          BayesFactor_0.9.12-4.4
## [31] coda_0.19-4            afex_1.2-1             lme4_1.1-31           
## [34] Matrix_1.5-3          
## 
## loaded via a namespace (and not attached):
##  [1] minqa_1.2.5         colorspace_2.0-3    ellipsis_0.3.2     
##  [4] sjlabelled_1.2.0    estimability_1.4.1  mc2d_0.1-22        
##  [7] rstudioapi_0.14     farver_2.1.1        MatrixModels_0.5-1 
## [10] fansi_1.0.3         xml2_1.3.3          codetools_0.2-18   
## [13] splines_4.2.2       mnormt_2.1.1        cachem_1.0.6       
## [16] sjmisc_2.8.9        jsonlite_1.8.4      nloptr_2.0.3       
## [19] broom_1.0.2         compiler_4.2.2      httr_1.4.4         
## [22] backports_1.4.1     assertthat_0.2.1    fastmap_1.1.0      
## [25] cli_3.6.0           htmltools_0.5.4     tools_4.2.2        
## [28] lmerTest_3.1-3      gtable_0.3.1        glue_1.6.2         
## [31] reshape2_1.4.4      dplyr_1.0.10        Rcpp_1.0.9         
## [34] jquerylib_0.1.4     vctrs_0.5.1         svglite_2.1.1      
## [37] insight_0.18.8      xfun_0.36           stringr_1.5.0      
## [40] rvest_1.0.3         lifecycle_1.0.3     zoo_1.8-11         
## [43] scales_1.2.1        parallel_4.2.2      sandwich_3.0-2     
## [46] yaml_2.3.6          pbapply_1.7-0       sass_0.4.4         
## [49] reshape_0.8.9       stringi_1.7.12      highr_0.10         
## [52] bayestestR_0.13.0   permute_0.9-7       boot_1.3-28.1      
## [55] rlang_1.0.6         pkgconfig_2.0.3     systemfonts_1.0.4  
## [58] evaluate_0.19       purrr_1.0.1         labeling_0.4.2     
## [61] tidyselect_1.2.0    magrittr_2.0.3      bookdown_0.31      
## [64] R6_2.5.1            generics_0.1.3      DBI_1.1.3          
## [67] pillar_1.8.1        withr_2.5.0         mgcv_1.8-41        
## [70] datawizard_0.6.5    abind_1.4-5         tibble_3.1.8       
## [73] performance_0.10.2  modelr_0.1.10       utf8_1.2.2         
## [76] grid_4.2.2          digest_0.6.31       webshot_0.5.4      
## [79] xtable_1.8-4        numDeriv_2016.8-1.1 munsell_0.5.0      
## [82] viridisLite_0.4.1   bslib_0.4.2
Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Iannone, R. (2020). Rmarkdown: Dynamic documents for r. Retrieved from https://CRAN.R-project.org/package=rmarkdown
Bakeman, R., & McArthur, D. (1996). Picturing repeated measures: Comments on loftus, morrison, and others. Behavior Research Methods, Instruments, and Computers, 28, 584–589. Journal Article.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2019). lme4: Linear mixed-effects models using ’eigen’ and S4. Retrieved from https://CRAN.R-project.org/package=lme4
Boik, R. J. (1981). A priori tests in repeated measures designs: Effects of nonsphericity. Psychometrika, 46, 241–255. Journal Article.
Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to loftus and masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45. Journal Article.
Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals and how to read pictures of data. Am Psychol, 60, 170–80. Journal Article.
De Rosario-Martinez, H. (2015). Phia: Post-hoc interaction analysis. Retrieved from https://CRAN.R-project.org/package=phia
Fox, J., Weisberg, S., & Price, B. (2020). Car: Companion to applied regression. Retrieved from https://CRAN.R-project.org/package=car
Franz, V. H., & Loftus, G. R. (2012). Standard errors and confidence intervals in within-subjects designs: Generalizing loftus and masson (1994) and avoiding the biases of alternative accounts. Psychonomic Bulletin and Review, 19, 395–404. Journal Article.
Frossard, J., & Renaud, O. (2019). Permuco: Permutation tests for regression, (repeated measures) ANOVA/ANCOVA and comparison of signals. Retrieved from https://CRAN.R-project.org/package=permuco
Gross, J., & Ligges, U. (2015). Nortest: Tests for normality. Retrieved from https://CRAN.R-project.org/package=nortest
Hays, W. L. (1994). Statistics (5th ed., pp. xviii, 1112 p.). Book, Fort Worth: Harcourt College Publishers.
Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods (3rd ed., pp. xiii, 819 pages). Book, Hoboken, New Jersey: John Wiley; Sons, Inc.
Hope, R. M. (2013). Rmisc: Ryan miscellaneous. Retrieved from https://CRAN.R-project.org/package=Rmisc
Hothorn, T., Bretz, F., & Westfall, P. (2020). Multcomp: Simultaneous inference in general parametric models. Retrieved from https://CRAN.R-project.org/package=multcomp
Howell, D. C. (2013). Statistical methods for psychology (8th ed., pp. xix, 770 p.). Book, Belmont, CA: Wadsworth Cengage Learning.
Iannone, R., Cheng, J., & Schloerke, B. (2019). Gt: Easily create presentation-ready display tables. Retrieved from https://github.com/rstudio/gt
Keppel, G., & Wickens, T. D. (2004). Design and analysis : A researcher’s handbook (4th ed., pp. xii, 611 p.). Book, Upper Saddle River, N.J: Pearson Prentice Hall.
Kirk, R. E. (2013). Experimental design : Procedures for the behavioral sciences (4th ed., pp. xiii, 1056 p.). Book, Thousand Oaks: Sage Publications.
Lawrence, M. A. (2016). Ez: Easy analysis and visualization of factorial experiments. Retrieved from https://CRAN.R-project.org/package=ez
Lenth, R. (2020). Emmeans: Estimated marginal means, aka least-squares means. Retrieved from https://CRAN.R-project.org/package=emmeans
Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1, 476–490. Journal Article.
Lüdecke, D. (2020). Sjstats: Statistical functions for regression models (version 0.17.9). doi:10.5281/zenodo.1284472
Mair, P., & Wilcox, R. (2020). Robust statistical methods in r using the WRS2 package. Behavior Research Methods, 52, 464–488.
Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data : A model comparison perspective (Third edition /, pp. pages cm). Book, New York, NY: Routledge.
McCulloch, C. E. (2005). Repeated measures anova, RIP? Chance, 18, 29–33. Journal Article.
Morales, M., R Development Core Team, with code developed by the, R-help listserv community, with general advice from the, & Duncan Murdoch., especially. (2020). Sciplot: Scientific graphing functions for factorial designs. Retrieved from https://CRAN.R-project.org/package=sciplot
Morey, Richard D. (2008). Confidence intervals from normalized data: A correction to cousineau (2005). Reason, 4, 61–64. Journal Article.
Morey, Richard D., & Rouder, J. N. (2018). BayesFactor: Computation of bayes factors for common designs. Retrieved from https://CRAN.R-project.org/package=BayesFactor
Morrison, G. R., & Weaver, B. (1995). Exactly how many p values is a picture worth? A commentary on loftus’s plot-plus-error-bar approach. Behavior Research Methods, Instruments, and Computers, 27, 52–56. Journal Article.
Myers, J. L., Well, A., & Lorch, R. F. (2010). Research design and statistical analysis (3rd ed., pp. 809 p.). Book, New York: Routledge.
Phillips, T. J., & Dudek, B. C. (1989). Modification of ethanol effects by bicuculline: Genotype-dependent responses and inheritance. Psychopharmacology, 98, 549–555. Journal Article.
Pinheiro, J., Bates, D., & R-core. (2020). Nlme: Linear and nonlinear mixed effects models. Retrieved from https://CRAN.R-project.org/package=nlme
Pruzek, R. M., & Helmreich, J. E. (2014). Granova: Graphical analysis of variance. Retrieved from https://CRAN.R-project.org/package=granova
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Revelle, W. (2020). Psych: Procedures for psychological, psychometric, and personality research. Retrieved from https://CRAN.R-project.org/package=psych
Rom, D. M. (1990). A sequentially rejective test procedure based on a modified bonferroni inequality. Biometrika, 77, 663–665. Journal Article.
RStudio Team. (2015). RStudio: Integrated development environment for r. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com/
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). Afex: Analysis of factorial experiments. Retrieved from https://CRAN.R-project.org/package=afex
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Dunnington, D. (2020). ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2
Wickham, H., & Henry, L. (2020). Tidyr: Tidy messy data. Retrieved from https://CRAN.R-project.org/package=tidyr
Wilcox, R. R. (2017). Introduction to robust estimation and hypothesis testing (4th edition., pp. pages cm). Book, Waltham, MA: Elsevier.
Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design (3rd ed., pp. xiii, 1057 p.). Book, New York: McGraw-Hill.
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida: Chapman; Hall/CRC. Retrieved from http://yihui.name/knitr/
Xie, Y. (2020a). Bookdown: Authoring books and technical documents with r markdown. Retrieved from https://CRAN.R-project.org/package=bookdown
Xie, Y. (2020b). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from https://CRAN.R-project.org/package=knitr
Zhu, H. (2019). kableExtra: Construct complex table with ’kable’ and pipe syntax. Retrieved from https://CRAN.R-project.org/package=kableExtra