References

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Iannone, R. (2020). Rmarkdown: Dynamic documents for r. Retrieved from https://CRAN.R-project.org/package=rmarkdown

Arnold, J. B. (2019). Ggthemes: Extra themes, scales and geoms for ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=ggthemes

Attali, D., & Baker, C. (2019). GgExtra: Add marginal histograms to ’ggplot2’, and more ’ggplot2’ enhancements. Retrieved from https://CRAN.R-project.org/package=ggExtra

Auguie, B. (2017). GridExtra: Miscellaneous functions for "grid" graphics. Retrieved from https://CRAN.R-project.org/package=gridExtra

Canty, A., & Ripley, B. (2019). Boot: Bootstrap functions (originally by angelo canty for s). Retrieved from https://CRAN.R-project.org/package=boot

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed., pp. xxviii, 703p.). Book, Mahwah, NJ: L. Erlbaum Associates.

Cook, R. D., & Weisberg, S. (1999). Applied regression including computing and graphics (pp. xxvi, 593p.). Book, New York: Wiley.

Darlington, R. B. (1990). Regression and linear models (pp. xxxii, 542p.). Book, New York: McGraw-Hill.

Dudek, B. (2020). Bcdstats: A collection of functions to support b. Dudek’s apsy510/511 classes.

Fox, J. (2016). Applied regression analysis and generalized linear models (Third Edition, pp. xxiv, 791pages). Book, Los Angeles: SAGE.

Fox, J., Weisberg, S., & Fox, J. (2011). An r companion to applied regression (2nd ed., pp. xxii, 449p.). Book, Thousand Oaks, Calif.: SAGE Publications.

Fox, J., Weisberg, S., & Price, B. (2020). Car: Companion to applied regression. Retrieved from https://CRAN.R-project.org/package=car

Gross, J., & Ligges, U. (2015). Nortest: Tests for normality. Retrieved from https://CRAN.R-project.org/package=nortest

Hebbali, A. (2020). Olsrr: Tools for building ols regression models. Retrieved from https://CRAN.R-project.org/package=olsrr

Heiberger, R. M. (2020). HH: Statistical analysis and data display: Heiberger and holland. Retrieved from https://CRAN.R-project.org/package=HH

Hothorn, T., Zeileis, A., Farebrother, R. W., & Cummins, C. (2019). Lmtest: Testing linear regression models. Retrieved from https://CRAN.R-project.org/package=lmtest

Howell, D. C. (2013). Statistical methods for psychology (8th ed., pp. xix, 770p.). Book, Belmont, CA: Wadsworth Cengage Learning.

Iannone, R., Cheng, J., & Schloerke, B. (2019). Gt: Easily create presentation-ready display tables. Retrieved from https://github.com/rstudio/gt

Komsta, L., & Novomestky, F. (2015). Moments: Moments, cumulants, skewness, kurtosis and related tests. Retrieved from https://CRAN.R-project.org/package=moments

Mangiafico, S. (2020). Rcompanion: Functions to support extension education program evaluation. Retrieved from https://CRAN.R-project.org/package=rcompanion

Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of bayes factors for common designs. Retrieved from https://CRAN.R-project.org/package=BayesFactor

Nimon, K., Oswald, F., & Roberts., J. K. (2013). Yhat: Interpreting regression effects. Retrieved from https://CRAN.R-project.org/package=yhat

Pena, E. A., & Slate, E. H. (2006). Global validation of linear model assumptions. J Am Stat Assoc, 101, 341. Journal Article.

Pena, E. A., & Slate, E. H. (2019). Gvlma: Global validation of linear models assumptions. Retrieved from https://CRAN.R-project.org/package=gvlma

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Revelle, W. (2020). Psych: Procedures for psychological, psychometric, and personality research. Retrieved from https://CRAN.R-project.org/package=psych

Ripley, B. (2019). MASS: Support functions and datasets for venables and ripley’s mass. Retrieved from https://CRAN.R-project.org/package=MASS

Robinson, D., & Hayes, A. (2020). Broom: Convert statistical analysis objects into tidy tibbles. Retrieved from https://CRAN.R-project.org/package=broom

RStudio Team. (2015). RStudio: Integrated development environment for r. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com/

Sarkar, D. (2020). Lattice: Trellis graphics for r. Retrieved from https://CRAN.R-project.org/package=lattice

Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., … Larmarange, J. (2020). GGally: Extension to ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=GGally

Soetaert, K. (2016). Plot3Drgl: Plotting multi-dimensional data - using ’rgl’. Retrieved from https://CRAN.R-project.org/package=plot3Drgl

Soetaert, K. (2019). Plot3D: Plotting multi-dimensional data. Retrieved from https://CRAN.R-project.org/package=plot3D

Trapletti, A., & Hornik, K. (2019). Tseries: Time series analysis and computational finance. Retrieved from https://CRAN.R-project.org/package=tseries

Weisberg, S. (2014). Applied linear regression (Fourth edition., pp. xvii, 340pages). Book, Hoboken, NJ: Wiley.

Wickham, H. (2020). Plyr: Tools for splitting, applying and combining data. Retrieved from https://CRAN.R-project.org/package=plyr

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Dunnington, D. (2020). Ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2

Wright, D. B., & London, K. (2009). Modern regression techniques using r : A practical guide for students and researchers (pp. viii, 204p.). Book, Los Angeles ; London: SAGE.

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida: Chapman; Hall/CRC. Retrieved from http://yihui.name/knitr/

Xie, Y. (2020a). Bookdown: Authoring books and technical documents with r markdown. Retrieved from https://CRAN.R-project.org/package=bookdown

Xie, Y. (2020b). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from https://CRAN.R-project.org/package=knitr

Zeileis, A., & Lumley, T. (2019). Sandwich: Robust covariance matrix estimators. Retrieved from https://CRAN.R-project.org/package=sandwich